Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39091837

RESUMO

The ketogenic diet, characterized by high fat and low carbohydrates, has gained popularity not only as a strategy for managing body weight but also for its efficacy in delaying cognitive decline associated with neurodegenerative diseases and the aging process. Since this dietary approach stimulates the liver's production of ketone bodies, primarily ß-hydroxybutyrate (BHB), which serves as an alternative energy source for neurons, we investigated whether BHB could mitigate impaired AMPA receptor trafficking, synaptic dysfunction, and cognitive decline induced by metabolic challenges such as saturated fatty acids. Here, we observe that, in cultured primary cortical neurons, exposure to palmitic acid (200µM) decreased surface levels of glutamate GluA1-containing AMPA receptors, whereas unsaturated fatty acids, such as oleic acid and ω-3 docosahexaenoic acid (200µM), and BHB (5mM) increased them. Furthermore, BHB countered the adverse effects of palmitic acid on synaptic GluA1 levels in hippocampal neurons, as well as excitability and plasticity in hippocampal slices. Additionally, daily intragastric administration of BHB (100 mg/kg/day) for two months reversed cognitive impairment induced by a saturated high-fat diet (49% of calories from fat) in a mouse experimental model of obesity. In summary, our findings underscore the significant impact of fatty acids and ketone bodies on AMPA receptors abundance, synaptic function and neuroplasticity, shedding light on the potential use of BHB to delay cognitive impairments associated with metabolic diseases.

2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674468

RESUMO

Breast cancer (BC) is the most common malignancy in women worldwide. While the main systemic treatment option is anthracycline-containing chemotherapy, chemoresistance continues to be an obstacle to patient survival. Carnitine palmitoyltransferase 1C (CPT1C) has been described as a poor-prognosis marker for several tumour types, as it favours tumour growth and hinders cells from entering senescence. At the molecular level, CPT1C has been associated with lipid metabolism regulation and important lipidome changes. Since plasma membrane (PM) rigidity has been associated with reduced drug uptake, we explored whether CPT1C expression could be involved in PM remodelling and drug chemoresistance. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) lipid analysis of PM-enriched fractions of MDA-MB-231 BC cells showed that CPT1C silencing increased PM phospholipid saturation, suggesting a rise in PM rigidity. Moreover, CPT1C silencing increased cell survival against doxorubicin (DOX) treatment in different BC cells due to reduced drug uptake. These findings, further complemented by ROC plotter analysis correlating lower CPT1C expression with a lower pathological complete response to anthracyclines in patients with more aggressive types of BC, suggest CPT1C as a novel predictive biomarker for BC chemotherapy.


Assuntos
Neoplasias da Mama , Carnitina O-Palmitoiltransferase , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Antraciclinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo
3.
Cell Death Dis ; 14(1): 57, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693836

RESUMO

There is an urgent need to identify reliable genetic biomarkers for accurate diagnosis, prognosis, and treatment of different tumor types. Described as a prognostic marker for many tumors is the neuronal protein carnitine palmitoyltransferase 1 C (CPT1C). Several studies report that CPT1C is involved in cancer cell adaptation to nutrient depletion and hypoxia. However, the molecular role played by CPT1C in cancer cells is controversial. Most published studies assume that, like canonical CPT1 isoforms, CPT1C is a mediator of fatty acid transport to mitochondria for beta-oxidation, despite the fact that CPT1C has inefficient catalytic activity and is located in the endoplasmic reticulum. In this review, we collate existing evidence on CPT1C in neurons, showing that CPT1C is a sensor of nutrients that interacts with and regulates other proteins involved in lipid metabolism and transport, lysosome motility, and the secretory pathway. We argue, therefore, that CPT1C expression in cancer cells is not a direct regulator of fat burn, but rather is a regulator of lipid metabolic reprograming and cell adaptation to environmental stressors. We also review the clinical relevance of CPT1C as a prognostic indicator and its contribution to tumor growth, cancer invasiveness, and cell senescence. This new and integrated vision of CPT1C function can help better understand the metabolic plasticity of cancer cells and improve the design of therapeutic strategies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Hipóxia/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Neurônios/metabolismo , Oxirredução
4.
Nutrients ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235789

RESUMO

In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer's disease.


Assuntos
Cognição , Receptores de AMPA , Idoso , Animais , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Glutamatos/farmacologia , Hipocampo/metabolismo , Humanos , Monossacarídeos/farmacologia , Plasticidade Neuronal , Nutrientes , Receptores de AMPA/metabolismo , Açúcares/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
5.
Prog Lipid Res ; 81: 101071, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186641

RESUMO

Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracellular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food intake and energy homeostasis has been known for decades. However, recent data uncover a new role in cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) proteins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malonylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges that future research in the field could address.


Assuntos
Carnitina O-Palmitoiltransferase , Malonil Coenzima A , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Cognição , Homeostase , Malonil Coenzima A/metabolismo
6.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931550

RESUMO

Carnitine palmitoyltransferase 1C (CPT1C) is a sensor of malonyl-CoA and is located in the ER of neurons. AMPA receptors (AMPARs) mediate fast excitatory neurotransmission in the brain and play a key role in synaptic plasticity. In the present study, we demonstrate across different metabolic stress conditions that modulate malonyl-CoA levels in cortical neurons that CPT1C regulates the trafficking of the major AMPAR subunit, GluA1, through the phosphatidyl-inositol-4-phosphate (PI(4)P) phosphatase SAC1. In normal conditions, CPT1C down-regulates SAC1 catalytic activity, allowing efficient GluA1 trafficking to the plasma membrane. However, under low malonyl-CoA levels, such as during glucose depletion, CPT1C-dependent inhibition of SAC1 is released, facilitating SAC1's translocation to ER-TGN contact sites to decrease TGN PI(4)P pools and trigger GluA1 retention at the TGN. Results reveal that GluA1 trafficking is regulated by CPT1C sensing of malonyl-CoA and provide the first report of a SAC1 inhibitor. Moreover, they shed light on how nutrients can affect synaptic function and cognition.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Proteínas de Membrana/genética , Neurônios/metabolismo , Receptores de AMPA/genética , Animais , Encéfalo/metabolismo , Glucose/metabolismo , Humanos , Malonil Coenzima A/genética , Camundongos , Nutrientes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico/genética , Transmissão Sináptica/genética
7.
Biochem Pharmacol ; 177: 113959, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272110

RESUMO

Breast cancer is the most prevalent type of tumor and the second leading cause of death due to cancer among women. Although screening methods, diagnosis and therapeutic options have improved in the last decade, chemoresistance remains an important challenge. There is evidence relating breast cancer resistance with signaling pathways involving hormone and growth receptors, survival, apoptosis and the activation of efflux pumps. However, the resistance mechanisms linked to drug uptake are poorly understood, despite it often being observed that the drug content is lower in resistant cancer cells and that the entry of the drug into these cells is a limiting process for the subsequent therapeutic effect.In this review, we provide an overview of drug uptake-based resistance mechanisms developed by cancer cells in the four main types of chemotherapy used in breast cancer: anthracyclines, taxanes, oxazaphosphorines and platinum-based drugs. The contribution of tumor microenvironment to reduced drug-uptake and multidrug resistance is also analyzed. As a developing field, nanomedicine-based approaches provide promising opportunities to improve drug specific targeting, cell interaction and uptake into cancer cells. The endocytic-mediated pathways attributed to the different types of nanoformulations as well as the contribution of nanotherapeutics to overcoming chemoresistance affecting drug uptake in breast cancer will be described. New approaches focusing on drug uptake mechanisms could improve breast cancer chemotherapy, obtaining better dose-response outcomes and reducing toxic side effects.


Assuntos
Antraciclinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oxazinas/uso terapêutico , Compostos de Platina/uso terapêutico , Taxoides/uso terapêutico , Antraciclinas/farmacocinética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Nanomedicina/métodos , Nanomedicina/tendências , Oxazinas/farmacocinética , Compostos de Platina/farmacocinética , Taxoides/farmacocinética , Microambiente Tumoral/efeitos dos fármacos
8.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32205379

RESUMO

The number and function of synaptic AMPA receptors (AMPARs) tightly regulates excitatory synaptic transmission. Current evidence suggests that AMPARs are inserted into the postsynaptic membrane during long-term potentiation (LTP) and are removed from the membrane during long-term depression (LTD). Dephosphorylation of GluA1 at Ser-845 and enhanced endocytosis are critical events in the modulation of LTD. Moreover, changes in scaffold proteins from the postsynaptic density (PSD) could be also related to AMPAR regulation in LTD. In the present study we analyzed the effect of chemical LTD (cLTD) on A-kinase anchoring protein (AKAP)150 and AMPARs levels in mouse-cultured neurons. We show that cLTD induces AKAP150 protein degradation via proteasome, coinciding with GluA1 dephosphorylation at Ser-845 and endocytosis of GluA1-containing AMPARs. Pharmacological inhibition of proteasome activity, but not phosphatase calcineurin (CaN), reverted cLTD-induced AKAP150 protein degradation. Importantly, AKAP150 silencing induced dephosphorylation of GluA1 Ser-845 and GluA1-AMPARs endocytosis while AKAP150 overexpression blocked cLTD-mediated GluA1-AMPARs endocytosis. Our results provide direct evidence that cLTD-induced AKAP150 degradation by the proteasome contributes to synaptic AMPARs endocytosis.


Assuntos
Potenciação de Longa Duração , Receptores de AMPA , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Endocitose , Camundongos , Plasticidade Neuronal , Sinapses/metabolismo
9.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868590

RESUMO

Anterograde transport of late endosomes or lysosomes (LE/Lys) is crucial for proper axon growth. However, the role of energetic nutrients has been poorly explored. Malonyl-CoA is a precursor of fatty acids, and its intracellular levels highly fluctuate depending on glucose availability or the energy sensor AMP-activated protein kinase (AMPK). We demonstrate in HeLa cells that carnitine palmitoyltransferase 1C (CPT1C) senses malonyl-CoA and enhances LE/Lys anterograde transport by interacting with the endoplasmic reticulum protein protrudin and facilitating the transfer of Kinesin-1 from protrudin to LE/Lys. In cultured mouse cortical neurons, glucose deprivation, pharmacological activation of AMPK or inhibition of malonyl-CoA synthesis decreases LE/Lys abundance at the axon terminal, and shortens axon length in a CPT1C-dependent manner. These results identify CPT1C as a new regulator of anterograde LE/Lys transport in response to malonyl-CoA changes, and give insight into how axon growth is controlled by nutrients.


Assuntos
Axônios/metabolismo , Carnitina O-Palmitoiltransferase/genética , Neurônios/metabolismo , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Axônios/fisiologia , Transporte Biológico/genética , Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Endossomos/genética , Endossomos/metabolismo , Glucose/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Malonil Coenzima A/metabolismo , Camundongos , Nutrientes/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2189-2202, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31047972

RESUMO

Dysfunctions of the vascular system directly contribute to the onset and progression of Alzheimer's disease (AD). The blood-brain barrier (BBB) shows signs of malfunction at early stages of the disease. When Abeta peptide (Aß) is deposited on brain vessels, it induces vascular degeneration by producing reactive oxygen species and promoting inflammation. These molecular processes are also related to an excessive SSAO/VAP-1 (semicarbazide-sensitive amine oxidase) enzymatic activity, observed in plasma and in cerebrovascular tissue of AD patients. We studied the contribution of vascular SSAO/VAP-1 to the BBB dysfunction in AD using in vitro BBB models. Our results show that SSAO/VAP-1 expression is associated to endothelial activation by altering the release of pro-inflammatory and pro-angiogenic angioneurins, most highly IL-6, IL-8 and VEGF. It is also related to a BBB structure alteration, with a decrease in tight-junction proteins such as zona occludens or claudin-5. Moreover, the BBB function reveals increased permeability and leukocyte adhesion in cells expressing SSAO/VAP-1, as well as an enhancement of the vascular Aß deposition induced by mechanisms both dependent and independent of the enzymatic activity of SSAO/VAP-1. These results reveal an interesting role of vascular SSAO/VAP-1 in BBB dysfunction related to AD progression, opening a new window in the search of alternative therapeutic targets for fighting AD.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Moléculas de Adesão Celular/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Neuroglia/citologia , Neuroglia/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Front Mol Neurosci ; 11: 275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135643

RESUMO

In neurons, AMPA receptor (AMPAR) function depends essentially on their constituent components:the ion channel forming subunits and ion channel associated proteins. On the other hand, AMPAR trafficking is tightly regulated by a vast number of intracellular neuronal proteins that bind to AMPAR subunits. It has been recently shown that the interaction between the GluA1 subunit of AMPARs and carnitine palmitoyltransferase 1C (CPT1C), a novel protein partner of AMPARs, is important in modulating surface expression of these ionotropic glutamate receptors. Indeed, synaptic transmission in CPT1C knockout (KO) mice is diminished supporting a positive trafficking role for that protein. However, the molecular mechanisms of such modulation remain unknown although a putative role of CPT1C in depalmitoylating GluA1 has been hypothesized. Here, we explore that possibility and show that CPT1C effect on AMPARs is likely due to changes in the palmitoylation state of GluA1. Based on in silico analysis, Ser 252, His 470 and Asp 474 are predicted to be the catalytic triad responsible for CPT1C palmitoyl thioesterase (PTE) activity. When these residues are mutated or when PTE activity is inhibited, the CPT1C effect on AMPAR trafficking is abolished, validating the CPT1C catalytic triad as being responsible for PTE activity on AMPAR. Moreover, the histidine residue (His 470) of CPT1C is crucial for the increase in GluA1 surface expression in neurons and the H470A mutation impairs the depalmitoylating catalytic activity of CPT1C. Finally, we show that CPT1C effect seems to be specific for this CPT1 isoform and it takes place solely at endoplasmic reticulum (ER). This work adds another facet to the impressive degree of molecular mechanisms regulating AMPAR physiology.

12.
Sci Rep ; 8(1): 6997, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725060

RESUMO

Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine. In some applications, they must survive under low nutrient conditions engendered by avascularity. Strategies to improve hMSCs survival may be of high relevance in tissue engineering. Carnitine palmitoyltransferase 1 C (CPT1C) is a pseudoenzyme exclusively expressed in neurons and cancer cells. In the present study, we show that CPT1C is also expressed in hMSCs and protects them against glucose starvation, glycolysis inhibition, and oxygen/glucose deprivation. CPT1C overexpression in hMSCs did not increase fatty acid oxidation capacity, indicating that the role of CPT1C in these cells is different from that described in tumor cells. The increased survival of CPT1C-overexpressing hMSCs observed during glucose deficiency was found to be the result of autophagy enhancement, leading to a greater number of lipid droplets and increased intracellular ATP levels. In fact, inhibition of autophagy or lipolysis was observed to completely block the protective effects of CPT1C. Our results indicate that CPT1C-mediated autophagy enhancement in glucose deprivation conditions allows a greater availability of lipids to be used as fuel substrate for ATP generation, revealing a new role of CPT1C in stem cell adaptation to low nutrient environments.


Assuntos
Autofagia , Carnitina O-Palmitoiltransferase/metabolismo , Glucose/metabolismo , Células-Tronco Mesenquimais/fisiologia , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular , Células Cultivadas , Metabolismo Energético , Ácidos Graxos/metabolismo , Humanos , Lipólise , Oxirredução
13.
Prog Lipid Res ; 61: 134-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26708865

RESUMO

Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.


Assuntos
Carnitina O-Palmitoiltransferase/fisiologia , Neoplasias/enzimologia , Animais , Cognição , Disfunção Cognitiva/enzimologia , Metabolismo Energético , Homeostase , Humanos , Metabolismo dos Lipídeos
14.
J Biol Chem ; 290(42): 25548-60, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26338711

RESUMO

The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Hipocampo/metabolismo , Receptores de AMPA/biossíntese , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/genética , Hipocampo/citologia , Hipocampo/enzimologia , Camundongos , Camundongos Knockout , Neurônios/enzimologia , Neurônios/metabolismo , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Transmissão Sináptica
15.
JAMA Neurol ; 72(5): 561-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25751282

RESUMO

IMPORTANCE: The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients. OBJECTIVE: To identify the genetic cause for a novel form of pure autosomal dominant HSP. DESIGN, SETTING, AND PARTICIPANTS: We examined and followed up with a family presenting to a tertiary referral center for evaluation of HSP for a decade until August 2014. Whole-exome sequencing was performed in 4 patients from the same family and was integrated with linkage analysis. Sanger sequencing was used to confirm the presence of the candidate variant in the remaining affected and unaffected members of the family and screen the additional patients with HSP. Five affected and 6 unaffected participants from a 3-generation family with pure adult-onset autosomal dominant HSP of unknown genetic origin were included. Additionally, 163 unrelated participants with pure HSP of unknown genetic cause were screened. MAIN OUTCOME AND MEASURE: Mutation in the neuronal isoform of carnitine palmitoyl-transferase (CPT1C) gene. RESULTS: We identified the nucleotide substitution c.109C>T in exon 3 of CPT1C, which determined the base substitution of an evolutionarily conserved Cys residue for an Arg in the gene product. This variant strictly cosegregated with the disease phenotype and was absent in online single-nucleotide polymorphism databases and in 712 additional exomes of control participants. We showed that CPT1C, which localizes to the endoplasmic reticulum, is expressed in motor neurons and interacts with atlastin-1, an endoplasmic reticulum protein encoded by the ATL1 gene known to be mutated in pure HSPs. The mutation, as indicated by nuclear magnetic resonance spectroscopy studies, alters the protein conformation and reduces the mean (SD) number (213.0 [46.99] vs 81.9 [14.2]; P < .01) and size (0.29 [0.01] vs 0.26 [0.01]; P < .05) of lipid droplets on overexpression in cells. We also observed a reduction of mean (SD) lipid droplets in primary cortical neurons isolated from Cpt1c-/- mice as compared with wild-type mice (1.0 [0.12] vs 0.44 [0.05]; P < .001), suggesting a dominant negative mechanism for the mutation. CONCLUSIONS AND RELEVANCE: This study expands the genetics of autosomal dominant HSP and is the first, to our knowledge, to link mutation in CPT1C with a human disease. The association of the CPT1C mutation with changes in lipid droplet biogenesis supports a role for altered lipid-mediated signal transduction in HSP pathogenesis.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Paraplegia Espástica Hereditária/genética , Adulto , Animais , Humanos , Itália , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação/genética , Linhagem
16.
Int J Dev Neurosci ; 37: 26-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24955869

RESUMO

Programmed cell death plays a critical role during cerebellar development. In particular, it has been shown in vivo and in vitro that developing cerebellar granule neurons (CGN) die apoptotically. Apoptosis involves a series of morphological changes and the activation of caspases. Inhibitor of apoptosis proteins (IAPs) is implicated in negative regulation of caspase activation and apoptotic cell death. Although apoptotic death of CGN has been extensively studied, there is no information about the role of IAPs in the developing cerebellum. Here, we studied the participation of some members of IAPs in the survival of the developing rat CGN in culture and under physiological conditions. Under these conditions, we found a differential expression pattern of cIAP-1, cIAP-2, XIAP and survivin during cerebellar development in an age-dependent manner, highlighting the significant increase of XIAP levels. We also detected an interaction between XIAP and caspase 3 at postnatal day (P) 12 and 16. On the other hand, we found a significant decrease of XIAP levels in cultured CGN maintained in chronic potassium deprivation, an apoptotic condition, suggesting a possible relationship between XIAP levels and neuronal viability. Under these conditions, we also detected the interaction of XIAP with active caspase-3. The down-regulation of XIAP in CGN cultured under survival conditions (chronic potassium depolarization) induced a reduction of cell viability and an increment of apoptotic cells. These findings support the idea that IAPs could be involved in the survival of CGN and that XIAP might be critical for neuronal survival in cerebellar development and during chronic depolarization in cultured CGN through a mechanism involving caspase inhibition.


Assuntos
Apoptose/fisiologia , Cerebelo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Imunoprecipitação , Lentivirus/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Interferência de RNA/fisiologia , Ratos , Ratos Wistar , Survivina
17.
Int J Biochem Mol Biol ; 4(3): 140-9, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24049669

RESUMO

It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and "core" mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems.

18.
Sci Rep ; 3: 2397, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928917

RESUMO

X-linked Inhibitor of apoptosis protein (XIAP) has been classically identified as a cell death regulator. Here, we demonstrate a novel function of XIAP as a regulator of neurite outgrowth in neuronal cells. In PC12 cells, XIAP overexpression prevents NGF-induced neuronal differentiation, whereas NGF treatment induces a reduction of endogenous XIAP levels concomitant with the induction of neuronal differentiation. Accordingly, downregulation of endogenous XIAP protein levels strongly increases neurite outgrowth in PC12 cells as well as axonal and dendritic length in primary cortical neurons. The effects of XIAP are mediated by the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERKs) pathway since blocking this pathway completely prevents the neuritogenesis mediated by XIAP downregulation. In addition, we found that XIAP binds to cRaf and Trk receptors. Our results demonstrate that XIAP plays a new role as a negative regulator of neurotrophin-induced neurite outgrowth and neuronal differentiation in developing neurons.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptor trkA/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Diferenciação Celular , Ligação Proteica , Ratos
19.
J Biol Chem ; 287(14): 11351-62, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22294685

RESUMO

NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inativação Gênica , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Ratos , Ratos Wistar , Ativação Transcricional/efeitos dos fármacos
20.
J Biol Chem ; 286(31): 27311-21, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21665950

RESUMO

ß-Amyloid (Aß), a peptide generated from the amyloid precursor protein, is widely believed to underlie the pathophysiology of Alzheimer disease (AD). Emerging evidences suggest that soluble Aß oligomers adversely affect synaptic function, leading to cognitive failure associated with AD. The Aß-induced synaptic dysfunction has been attributed to the synaptic removal of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs). However, the molecular mechanisms underlying the loss of AMPAR induced by Aß at synapses are largely unknown. In this study we have examined the effect of Aß oligomers on phosphorylated GluA1 at serine 845, a residue that plays an essential role in the trafficking of AMPARs toward extrasynaptic sites and the subsequent delivery to synapses during synaptic plasticity events. We found that Aß oligomers reduce basal levels of Ser-845 phosphorylation and surface expression of AMPARs affecting AMPAR subunit composition. Aß-induced GluA1 dephosphorylation and reduced receptor surface levels are mediated by an increase in calcium influx into neurons through ionotropic glutamate receptors and activation of the calcium-dependent phosphatase calcineurin. Moreover, Aß oligomers block the extrasynaptic delivery of AMPARs induced by chemical synaptic potentiation. In addition, reduced levels of total and phosphorylated GluA1 are associated with initial spatial memory deficits in a transgenic mouse model of AD. These findings indicate that Aß oligomers could act as a synaptic depressor affecting the mechanisms involved in the targeting of AMPARs to the synapses during early stages of the disease.


Assuntos
Peptídeos beta-Amiloides/química , Biopolímeros/farmacologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Biopolímeros/química , Western Blotting , Membrana Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA