Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Vaccine ; 37(1): 80-89, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30478007

RESUMO

Current acellular-pertussis (aP) vaccines appear inadequate for long-term pertussis control because of short-lived efficacy and the increasing prevalence of pertactin-negative isolates which may negatively impact vaccine efficacy. In this study, we added fimbriae (FIM)2 and FIM3 protein to licensed 2-, 3- or 5-component aP vaccines (Pentavac®, Boostrix®, Adacel®, respectively) to assess whether an aP vaccine with enhanced FIM content demonstrates enhanced efficacy. Vaccine-induced protection was assessed in an intranasal mouse challenge model. In addition, potential reactogenicity was measured by biomarkers in a human whole blood assay (WBA) in vitro and benchmarked the responses against licensed whole cell pertussis (wP) and aP vaccines including Easyfive®, Pentavac® and Pentacel®. The results show that commercial vaccines demonstrated reduced efficacy against pertactin-negative versus pertactin-positive strains. However, addition of higher amounts of FIM2/3 to aP vaccines reduced lung colonization and increased vaccine efficacy against a pertactin-negative strain in a dose-dependent manner. Improvements in efficacy were similar for FIM2 and FIM3-expressing strains. Increasing the amount of FIM2/3 proteins in aP formulations did not alter vaccine-induced biomarkers of potential reactogenicity including prostaglandin E2, cytokines and chemokines in human newborn cord and adult peripheral blood tested in vitro. These results suggest that increasing the quantity of FIM proteins in current pertussis vaccine formulations may further enhance vaccine efficacy against B. pertussis infection without increasing the reactogenicity of the vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Fímbrias/imunologia , Vacina contra Coqueluche/imunologia , Fatores de Virulência de Bordetella/imunologia , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Biomarcadores/sangue , Bordetella pertussis , Quimiocinas/imunologia , Citocinas/imunologia , Dinoprostona/imunologia , Feminino , Proteínas de Fímbrias/genética , Humanos , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Acelulares/imunologia , Fatores de Virulência de Bordetella/genética , Coqueluche/imunologia
2.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28971965

RESUMO

The global burden of disease caused by extraintestinal pathogenic Escherichia coli (ExPEC) is increasing as the prevalence of multidrug-resistant strains rises. A multivalent ExPEC O-antigen bioconjugate vaccine could have a substantial impact in preventing bacteremia and urinary tract infections. Development of an ExPEC vaccine requires a readout to assess the functionality of antibodies. We developed an opsonophagocytic killing assay (OPA) for four ExPEC serotypes (serotypes O1A, O2, O6A, and O25B) based on methods established for pneumococcal conjugate vaccines. The performance of the assay was assessed with human serum by computing the precision, linearity, trueness, total error, working range, and specificity. Serotypes O1A and O6A met the acceptance criteria for precision (coefficient of variation for repeatability and intermediate precision, ≤50%), linearity (90% confidence interval of the slope of each strain, 0.80, 1.25), trueness (relative bias range, -30% to 30%), and total error (total error range, -65% to 183%) at five serum concentrations and serotypes O2 and O25B met the acceptance criteria at four concentrations (the lowest concentration for serotypes O2 and O25B did not meet the system suitability test of maximum killing of ≥85% of E. coli cells). All serotypes met the acceptance criteria for specificity (opsonization index value reductions of ≤20% for heterologous serum preadsorption and ≥70% for homologous serum preadsorption). The assay working range was defined on the basis of the lowest and highest concentrations at which the assay jointly fulfilled the target acceptance criteria for linearity, precision, and accuracy. An OPA suitable for multiple E. coli serotypes has been developed, qualified, and used to assess the immunogenicity of a 4-valent E. coli bioconjugate vaccine (ExPEC4V) administered to humans.


Assuntos
Vacinas contra Escherichia coli/imunologia , Imunoensaio/métodos , Proteínas Opsonizantes/imunologia , Fagocitose , Humanos , Sensibilidade e Especificidade
3.
Sci Rep ; 7(1): 874, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408751

RESUMO

The mechanisms underlying mesenchymal stem cells' (MSC) suppressive potency are largely unknown. We here show that highly suppressive human adipose tissue-derived MSC (AdMSC) display and induce a differential immunologic profile, upon ongoing AdMSC suppressive activity, promoting: (i) early correlated inhibition of IFN-γ and TNF-α production, along IL-10 increase, (ii) CD73+Foxp3+Treg subset expansion, and (iii) specific correlations between gene expression increases, such as: MMP9 correlated with CCL22, TNF, FASL, RUNX3, and SEMAD4 in AdMSC and, in T cells, MMP9 upregulation correlated with CCR4, IL4 and TBX21, among others, whereas MMP2 correlated with BCL2 and LRRC31. MMP9 emerged as an integrating molecule for both AdMSC and T cells in molecular networks built with our gene expression data, and we confirmed upregulation of MMP9 and MMP2 at the protein level, in AdMSC and T cells, respectively. MMP2/9 inhibition significantly decreased AdMSC suppressive effect, confirming their important role in suppressive acitivity. We conclude that MMP9 and 2 are robust new players involved in human MSC immunoregulatory mechanisms, and the higher suppressive activity correlates to their capacity to trigger a coordinated action of multiple specific molecules, mobilizing various immunoregulatory mechanisms.


Assuntos
Redes Reguladoras de Genes , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Linfócitos T Reguladores/citologia , Adulto , Idoso , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Linfócitos T Reguladores/metabolismo
4.
Lancet Infect Dis ; 17(5): 528-537, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28238601

RESUMO

BACKGROUND: Escherichia coli infections are increasing worldwide in community and hospital settings. The E coli O-antigen is a promising vaccine target. We aimed to assess the safety and immunogenicity of a bioconjugate vaccine containing the O-antigens of four E coli serotypes (ExPEC4V). METHODS: In this multicentre phase 1b, first-in-human, single-blind, placebo-controlled trial, we randomly assigned (1:1) healthy adult women with a history of recurrent urinary tract infection (UTI) to receive a single injection of either intramuscular ExPEC4V or placebo. The primary outcome was the incidence of adverse events among vaccine and placebo recipients throughout the study. Secondary outcomes included immunogenicity and antibody functionality, and the incidence of UTIs caused by E coli vaccine serotypes in each group. This study is registered with ClinicalTrials.gov, number NCT02289794. FINDINGS: Between Jan 20, 2014, and Aug 27, 2014, 93 women received target-dose ExPEC4V and 95 received placebo. The vaccine was well tolerated: no vaccine-related serious adverse events occurred. Overall, 56 (60%) target-dose vaccines and 47 (49%) placebo recipients experienced at least one adverse event that was possibly, probably, or certainly related to injection. Vaccination induced significant IgG responses for all serotypes: at day 30 compared with baseline, O1A titres were 4·6 times higher, O2 titres were 9·4 times higher, O6A titres were 4·9 times higher, and O25B titres were 5·9 times higher (overall p<0·0001). Immune responses persisted at 270 days but were lower than those at 30 days. Opsonophagocytic killing activity showed antibody functionality. No reduction in the incidence of UTIs with 103 or more colony-forming units per mL of vaccine-serotype E coli was noted in the vaccine compared with the placebo group (0·149 mean episodes vs 0·146 mean episodes; p=0·522). In post-hoc exploratory analyses of UTIs with higher bacterial counts (≥105 colony-forming units per mL), the number of vaccine serotype UTIs did not differ significantly between groups (0·046 mean episodes in the vaccine group vs 0·110 mean episodes in the placebo group; p=0·074). However, significantly fewer UTIs caused by E coli of any serotype were noted in the vaccine group compared with the placebo group (0·207 mean episodes vs 0·463 mean episodes; p=0·002). INTERPRETATION: This tetravalent E coli bioconjugate vaccine candidate was well tolerated and elicited functional antibody responses against all vaccine serotypes. Phase 2 studies have been initiated to confirm these findings. FUNDING: GlycoVaxyn, Janssen Vaccines.


Assuntos
Vacinas contra Escherichia coli/administração & dosagem , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Infecções Urinárias/prevenção & controle , Adulto , Idoso , Vacinas contra Escherichia coli/uso terapêutico , Feminino , Humanos , Imunogenicidade da Vacina , Pessoa de Meia-Idade , Método Simples-Cego , Resultado do Tratamento , Vacinação/métodos
5.
Vaccine ; 34(35): 4152-4160, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27395567

RESUMO

BACKGROUND: Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. METHODS: Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2µg or 20µg per O-antigen, subcutaneously), mice (0.2µg or 2µg per O-antigen, subcutaneously) and rats (0.4µg or 4µg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4µg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16µg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. RESULTS: Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. CONCLUSIONS: ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/imunologia , Imunogenicidade da Vacina , Antígenos O/imunologia , ADP Ribose Transferases/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Toxinas Bacterianas/imunologia , Escherichia coli , Exotoxinas/imunologia , Feminino , Imunização Secundária , Camundongos , Camundongos Endogâmicos ICR , Nível de Efeito Adverso não Observado , Coelhos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade , Vacinas Conjugadas/imunologia , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
6.
Int J Med Microbiol ; 306(1): 38-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26699834

RESUMO

Filamentous hemagglutinin (FHA) is an important adhesin of the whooping cough agent Bordetella pertussis and is contained in most acellular pertussis vaccines. Recently, FHA was proposed to exert an immunomodulatory activity through induction of tolerogenic IL-10 secretion from dendritic cells. We have re-evaluated the cytokine-inducing activity of FHA, placing specific emphasis on the role of the residual endotoxin contamination of FHA preparations. We show that endotoxin depletion did not affect the capacity of FHA to bind primary human monocyte-derived dendritic cells, while it abrogated the capacity of FHA to elicit TNF-α and IL-10 secretion and strongly reduced its capacity to trigger IL-6 production. The levels of cytokines induced by the different FHA preparations correlated with their residual contents of B. pertussis endotoxin. Moreover, FHA failed to trigger cytokine secretion in the presence of antibodies that block TLR2 and/or TLR4 signaling. The TLR2 signaling capacity appeared to be linked to the presence of endotoxin-associated components in FHA preparations and not to the FHA protein itself. These results show that the endotoxin-depleted FHA protein does not induce cytokine release from human dendritic cells.


Assuntos
Adesinas Bacterianas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Interleucina-10/metabolismo , Fatores de Virulência de Bordetella/imunologia , Células Cultivadas , Humanos
8.
Expert Rev Vaccines ; 13(10): 1229-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25081731

RESUMO

Pertussis is a highly contagious respiratory disease that is caused by Bordetella pertussis. Despite being vaccine preventable, pertussis rates have been rising steadily over the last decades, even in areas with high vaccine uptake. Recently, experiments with infant baboons indicated that although vaccination with acellular pertussis vaccines prevented disease, no apparent effect was observed on infection and transmission. One explanation may be that current acellular pertussis vaccines do not induce high levels of opsonophagocytic and/or bactericidal activity, implying that engineering of vaccines that promote bacterial killing may improve efficacy. Here, we discuss the importance of complement-mediated killing in vaccine-induced protection against B. pertussis. We first examine how B. pertussis may have evolved different complement evasion strategies. Second, we explore the benefits of opsonophagocytic and/or bactericidal killing in vaccine-induced protection and discuss whether or not inclusion of new opsonophagocytic or bactericidal target antigens in pertussis vaccines may benefit efficacy.


Assuntos
Anticorpos Antibacterianos/imunologia , Bordetella pertussis/imunologia , Proteínas do Sistema Complemento/fisiologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Animais , Proteínas do Sistema Complemento/imunologia , Humanos , Vacina contra Coqueluche/imunologia
9.
Nature ; 512(7515): 387-92, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25119038

RESUMO

The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mycobacterium tuberculosis/imunologia , Pigmentos Biológicos/metabolismo , Pseudomonas aeruginosa/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Antibacterianos/metabolismo , Células da Medula Óssea/citologia , Citocinas/imunologia , Citocinas/metabolismo , Retroalimentação Fisiológica , Humanos , Ligantes , Ativação de Macrófagos , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fenazinas/metabolismo , Pigmentos Biológicos/química , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
10.
J Clin Invest ; 124(3): 1268-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509076

RESUMO

Successful host defense against numerous pulmonary infections depends on bacterial clearance by polymorphonuclear leukocytes (PMNs); however, excessive PMN accumulation can result in life-threatening lung injury. Local expression of CXC chemokines is critical for PMN recruitment. The impact of chemokine-dependent PMN recruitment during pulmonary Mycobacterium tuberculosis infection is not fully understood. Here, we analyzed expression of genes encoding CXC chemokines in M. tuberculosis-infected murine lung tissue and found that M. tuberculosis infection promotes upregulation of Cxcr2 and its ligand Cxcl5. To determine the contribution of CXCL5 in pulmonary PMN recruitment, we generated Cxcl5(-/-) mice and analyzed their immune response against M. tuberculosis. Both Cxcr2(-/-) mice and Cxcl5(-/-) mice, which are deficient for only one of numerous CXCR2 ligands, exhibited enhanced survival compared with that of WT mice following high-dose M. tuberculosis infection. The resistance of Cxcl5(-/-) mice to M. tuberculosis infection was not due to heightened M. tuberculosis clearance but was the result of impaired PMN recruitment, which reduced pulmonary inflammation. Lung epithelial cells were the main source of CXCL5 upon M. tuberculosis infection, and secretion of CXCL5 was reduced by blocking TLR2 signaling. Together, our data indicate that TLR2-induced epithelial-derived CXCL5 is critical for PMN-driven destructive inflammation in pulmonary tuberculosis.


Assuntos
Células Epiteliais Alveolares/imunologia , Quimiocina CXCL5/fisiologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/imunologia , Tuberculose Pulmonar/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Animais , Linhagem Celular , Inflamação/metabolismo , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/microbiologia , Receptores de Interleucina-8B/metabolismo , Linfócitos T/imunologia , Linfócitos T/microbiologia , Receptor 2 Toll-Like/metabolismo , Ativação Transcricional , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA