Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hemasphere ; 7(3): e840, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36844182

RESUMO

Chronic lymphocytic leukemia (CLL) is a common and incurable B-cell malignancy. Recent therapeutic approaches that target the B-cell receptor signaling pathway include inhibition of phosphatidylinositol-3-kinase (PI3K). The PI3K isoform delta is constitutively active in CLL, making it an attractive therapeutic target. However, the expression of PI3K isoforms is not exclusive to leukemic cells, as other immune cells in the tumor microenvironment also rely on PI3K activity. Subsequently, therapeutic inhibition of PI3K causes immune-related adverse events (irAEs). Here, we analyzed the impact of the clinically approved PI3Kδ inhibitors idelalisib and umbralisib, the PI3Kγ inhibitor eganelisib, and the dual-γ and -δ inhibitor duvelisib on the functional capacity of T cells. All investigated inhibitors reduced T-cell activation and proliferation in vitro, which is in line with PI3K being a crucial signaling component of the T-cell receptor signaling. Further, dual inhibition of PI3Kγ and PI3Kδ showed strong additive effects suggesting a role also for PI3Kγ in T cells. Extrapolation of this data to a clinical setting could provide an explanation for the observed irAEs in CLL patients undergoing treatment with PI3K inhibitors. Consequently, this highlights the need for a close monitoring of patients treated with PI3K inhibitors, and particularly duvelisib, due to their potentially increased risk of T-cell deficiencies and associated infections.

2.
Front Immunol ; 11: 595818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552053

RESUMO

Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Fosfatidilinositol 3-Quinases/imunologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Animais , Antineoplásicos/farmacologia , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA