Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38750386

RESUMO

BACKGROUND AND OBJECTIVE: A model-informed drug development (MIDD) approach was implemented for paliperidone palmitate (PP) 6-month (PP6M) clinical development, using pharmacokinetics and pharmacokinetic/pharmacodynamic model-based simulations. METHODS: PP6M pharmacokinetics were simulated by extending the PP 3-month (PP3M) pharmacokinetic model to account for increased injection volume, and hence dose. Contribution of the MIDD approach to the design of the pivotal PP6M phase-3 study (PP6M/PP3M noninferiority study, NCT03345342) investigating schizophrenia relapse rates was twofold: (1) PP6M dose selection, and (2) hypothesis generation that lower trough concentrations (Ctrough) associated with PP6M, relative to PP3M, were not associated with lower efficacy, which was to be evaluated in the phase-3 study. Moreover, accompanied by an intense sampling scheme to adequately characterize paliperidone pharmacokinetics and to elucidate the potential relationship between concentration and safety/efficacy, the bridging strategy eliminated the need for additional phase-1/phase-2 clinical studies. RESULTS: Using a MIDD bridging strategy, PP6M doses were selected that, compared with PP3M, were expected to have a similar range of exposures and a noninferior relapse rate and safety profile. Clinical data from PP6M/PP3M noninferiority study confirmed that PP6M, compared with PP3M, had a similar range of exposures (T'jollyn et al. in Eur J Drug Metab Pharmacokinet 2024), as well as a noninferior relapse rate and safety profile (this manuscript). CONCLUSIONS: Consistency of the MIDD approach with observed clinical outcomes confirmed the hypothesis that lower Ctrough did not lead to increased relapse rates at the doses administered. Although higher paliperidone peak concentrations are achieved with corresponding doses of PP6M relative to PP3M in the phase-3 clinical study, types and incidences of treatment-related adverse events were comparable between PP6M and PP3M groups and no new safety concerns emerged for PP6M (Najarian et al. in Int J Neuropsychopharmacol 25(3):238-251, 2022).

2.
CPT Pharmacometrics Syst Pharmacol ; 11(3): 348-361, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35020971

RESUMO

Before investing resources into the development of a precision dosing (model-informed precision dosing [MIPD]) tool for tacrolimus, the performance of the tool was evaluated in silico. A retrospective dataset of 315 de novo kidney transplant recipients was first used to identify a one-compartment pharmacokinetic (PK) model with time-dependent clearance. MIPD performance was subsequently evaluated by calculating errors to predict future concentrations, which is directly related to dosing precision and probability of target attainment (PTA). Based on the identified model residual error, the theoretical upper limit was 45% PTA for a target of 13.5 ng/ml and an acceptable range of 12-15 ng/ml. Using empirical Bayesian estimation, this limit was reached on day 5 post-transplant and beyond. By incorporating correlated within-patient variability when predicting future individual concentrations, PTA improved beyond the theoretical upper limit. This yielded a Bayesian feedback dosing algorithm accurately predicting future trough concentrations and adapting each dose to reach a target concentration. Simulated concentration-time profiles were then used to quantify MIPD-based improvement on three end points: average PTA increased from 28% to 39%, median time to three concentrations in target decreased from 10 to 7 days, and mean log-squared distance to target decreased from 0.080 to 0.055. A study of 200 patients was predicted to have sufficient power to demonstrate these nuanced PK end points reliably. These simulations supported our decision to develop a precision dosing tool for tacrolimus and test it in a prospective trial.


Assuntos
Transplante de Rim , Tacrolimo , Teorema de Bayes , Humanos , Imunossupressores , Estudos Prospectivos , Estudos Retrospectivos
3.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 569-580, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34755484

RESUMO

A population pharmacokinetic (PK)-pharmacodynamic (PD) model was developed using data from 345 patients with cancer. The population PK-PD model evaluated the effect of erdafitinib total and free plasma concentrations on serum phosphate concentrations after once-daily oral continuous (0.5-12 mg) and intermittent (10-12 mg for 7 days on/7 days off) dosing, and investigated the potential covariates affecting erdafitinib-related changes in serum phosphate levels. Phosphate is used as a biomarker for erdafitinib's efficacy and safety: increases in serum phosphate were observed after dosing with erdafitinib, which were associated with fibroblast growth factor receptor target engagement via inhibition of renal fibroblast growth factor 23-mediated signaling. PK-PD model-based simulations were performed to assess the approved PD-guided dosing algorithm of erdafitinib (8 mg once-daily continuous dosing, with up-titration to 9 mg based on phosphate levels [<5.5 mg/dl] and tolerability at 14-21 days of treatment). The serum phosphate concentrations increased after the first dose and reached near maximal level after 14 days of continuous treatment. Serum phosphate increased with erdafitinib free drug concentrations: doubling the free concentration resulted in a 1.8-fold increase in drug-related phosphate changes. Dose adjustment after at least 14 days of dosing was supported by achievement of >95% maximal serum phosphate concentration. The peak-to-trough fluctuation within a dosing interval was limited for serum phosphate concentrations (5.68-5.65 mg/dl on Day 14), supporting phosphate monitoring at any time relative to dosing. Baseline phosphate was higher in women, otherwise, none of the investigated covariate-parameter relationships were considered clinically relevant. Simulations suggest that the starting dose of 8-mg with up-titration to 9-mg on Days 14-21 maximized the number of patients within the target serum phosphate concentrations (5.5-7 mg/dl) while limiting the number of treatment interruptions. The findings from the PK-PD model provided a detailed understanding of the erdafitinib concentration-related phosphate changes over time, which supports erdafitinib's dosing algorithm.


Assuntos
Neoplasias , Pirazóis , Feminino , Humanos , Neoplasias/tratamento farmacológico , Fosfatos/uso terapêutico , Pirazóis/farmacocinética , Quinoxalinas/farmacocinética
4.
Pharmaceutics ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683916

RESUMO

Model-informed precision dosing (MIPD) may be a solution to therapeutic failure of infliximab for patients with ulcerative colitis (UC), as underexposure could be avoided, and the probability of endoscopic improvement (pEI; Mayo endoscopic subscore ≤ 1) could be optimized. To investigate in silico whether this claim has merit, four induction dosing regimens were simulated: 5 mg/kg (label dosing), 10 mg/kg, covariate-based MIPD (fat-free mass, corticosteroid use, and presence of extensive colitis at baseline), and concentration-based MIPD (based on the trough concentration at day 14). Covariate- and concentration-based MIPD were chosen to target the same median area under the infliximab concentration-time curve up to endoscopy at day 84 (AUCd84), as was predicted from 10 mg/kg dosing. Dosing at 5 mg/kg resulted in a mean ± standard deviation pEI of 55.7 ± 9.0%. Increasing the dose to 10 mg/kg was predicted to improve pEI to 65.1 ± 6.1%. Covariate-based MIPD reduced variability in exposure and pEI (65.1 ± 5.5%). Concentration-based MIPD decreased variability further (66.0 ± 3.9%) but did so at an increased average dose of 2293 mg per patient, as compared to 2168 mg for 10 mg/kg dosing. Mean pEI remained unchanged between 10 mg/kg dosing and MIPD, since the same median AUCd84 was targeted. In conclusion, quantitative simulations predict MIPD will reduce variability in exposure and pEI between patients with UC during infliximab induction therapy.

5.
Sci Rep ; 11(1): 12229, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108572

RESUMO

Zebrafish (Danio rerio) is increasingly used to assess the pharmacological activity and toxicity of compounds. The spatiotemporal distribution of seven fluorescent alkyne compounds was examined during 48 h after immersion (10 µM) or microinjection (2 mg/kg) in the pericardial cavity (PC), intraperitoneally (IP) and yolk sac (IY) of 3 dpf zebrafish eleuthero-embryos. By modelling the fluorescence of whole-body contours present in fluorescence images, the main pharmacokinetic (PK) parameter values of the compounds were determined. It was demonstrated that especially in case of short incubations (1-3 h) immersion can result in limited intrabody exposure to compounds. In this case, PC and IP microinjections represent excellent alternatives. Significantly, IY microinjections did not result in a suitable intrabody distribution of the compounds. Performing a QSPkR (quantitative structure-pharmacokinetic relationship) analysis, LogD was identified as the only molecular descriptor that explains the final uptake of the selected compounds. It was also shown that combined administration of compounds (immersion and microinjection) provides a more stable intrabody exposure, at least in case of a prolonged immersion and compounds with LogD value > 1. These results will help reduce the risk of false negative results and can offer an invaluable input for future translational research and safety assessment applications.


Assuntos
Alcinos/química , Embrião não Mamífero/metabolismo , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Microinjeções/métodos , Imagem Molecular/métodos , Análise Espaço-Temporal , Animais , Embrião não Mamífero/efeitos dos fármacos , Microinjeções/classificação , Distribuição Tecidual , Saco Vitelino/metabolismo , Peixe-Zebra
6.
Clin Pharmacokinet ; 60(7): 897-906, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33611729

RESUMO

BACKGROUND: Therapeutic hypothermia (TH) is an established intervention to improve the outcome of neonates with moderate-to-severe hypoxic-ischemic encephalopathy resulting from perinatal asphyxia. Despite this beneficial effect, TH may further affect drug elimination pathways such as the glomerular filtration rate. OBJECTIVES: The objective of this study was to quantify the effect of TH in addition to asphyxia on mannitol clearance as a surrogate for the glomerular filtration rate. METHODS: The effect of asphyxia and TH (mild vs moderate/severe) on mannitol clearance was assessed using a population approach, based on mannitol observations collected in the ALBINO (ALlopurinol in addition to TH for hypoxic-ischemic Brain Injury on Neurocognitive Outcome) trial, as some were exposed to a second dose of 10 mg/kg intravenous mannitol as placebo to ensure blinding. Pharmacokinetic analysis and model development were conducted using NONMEM version 7.4. RESULTS: Based on 77 observations from 17 neonates (TH = 13), a one-compartment model with first-order linear elimination best described the observed data. To account for prenatal glomerular filtration rate maturation, both birthweight and gestational age were implemented as clearance covariates using an earlier published three-quarters power function and a sigmoid hyperbolic function. Our final model predicted a mannitol clearance of 0.15 L/h for a typical asphyxia neonate (39.5 weeks, birthweight 3.25 kg, no TH), lower than the reported value of 0.33 L/h for a healthy neonate of similar age and weight. By introducing TH as a binary covariate on clearance, the additional impact of TH on mannitol clearance was quantified (60% decrease). CONCLUSIONS: Mannitol clearance was decreased by approximately 60% in neonates undergoing TH, although this is likely confounded with asphyxia severity. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT03162653.


Assuntos
Asfixia Neonatal , Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Asfixia Neonatal/terapia , Feminino , Taxa de Filtração Glomerular , Humanos , Hipóxia-Isquemia Encefálica/terapia , Recém-Nascido , Manitol , Gravidez
7.
Br J Clin Pharmacol ; 85(4): 782-795, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30634202

RESUMO

AIMS: The therapeutic failure of infliximab therapy in patients with ulcerative colitis remains a challenge even 2 decades after its approval. Therapeutic drug monitoring (TDM) has shown value during maintenance therapy, but induction therapy has still not been explored. Patients may be primary nonresponders or underexposed with the standard dosing regimen. We aimed to: (i) develop a population pharmacokinetic-pharmacodynamic model; (ii) identify the best exposure metric that predicts mucosal healing; and (iii) build an exposure-response (ER) model to demonstrate model-based dose finding during induction therapy with infliximab. METHODS: Data were retrospectively collected from a clinical database. A total of 583 samples, from 204 patients, was used to develop a population pharmacokinetic model to generate exposure metrics for subsequent ER modelling. A subset of 159 patients was used to develop a logistic regression ER model, describing the relationship between infliximab exposure and ordered transitions between Mayo endoscopic subscore (MES) 3, 2 and ≤1 (baseline to post-induction). RESULTS: A 1-compartment population pharmacokinetic model with interindividual and interoccasion variability was found to fit the data best. Covariates influencing exposure were C-reactive protein, albumin, baseline MES, fat-free mass, concomitant corticosteroid use and pancolitis. The cumulative area under the infliximab concentration-time curve until endoscopy (CAUCendoscopy ) was found to be the best exposure metric for predicting mucosal healing (baseline MES >1 and post-induction MES ≤1). The model predicted that 70% of patients will attain mucosal healing with infliximab administered at days 0, 14 and 42 and a target CAUCendoscopy of 3752 mg/L*day at day 84. CONCLUSIONS: TDM-based dose individualisation targeting CAUCendoscopy has the potential to improve the effectiveness of infliximab during induction therapy.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Fármacos Gastrointestinais/administração & dosagem , Infliximab/administração & dosagem , Modelos Biológicos , Adulto , Colite Ulcerativa/sangue , Colite Ulcerativa/diagnóstico por imagem , Colonoscopia , Relação Dose-Resposta a Droga , Feminino , Fármacos Gastrointestinais/farmacocinética , Humanos , Infliximab/farmacocinética , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Indução de Remissão/métodos , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA