Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1422370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938578

RESUMO

Introduction: Hematopoietic stem cell transplantation (HSCT) is associated with immune complications and endothelial dysfunction due to intricate donor-recipient interactions, conditioning regimens, and inflammatory responses. Methods: This study investigated the role of the complement system during HSCT and its interaction with the cytokine network. Seventeen acute myeloid leukemia patients undergoing HSCT were monitored, including blood sampling from the start of the conditioning regimen until four weeks post-transplant. Clinical follow-up was 200 days. Results: Total complement functional activity was measured by WIELISA and the degree of complement activation by ELISA measurement of sC5b-9. Cytokine release was measured using a 27-multiplex immuno-assay. At all time-points during HSCT complement functional activity remained comparable to healthy controls. Complement activation was continuously stable except for two patients demonstrating increased activation, consistent with severe endotheliopathy and infections. In vitro experiments with post-HSCT whole blood challenged with Escherichia coli, revealed a hyperinflammatory cytokine response with increased TNF, IL-1ß, IL-6 and IL-8 formation. Complement C3 inhibition markedly reduced the cytokine response induced by Staphylococcus aureus, Aspergillus fumigatus, and cholesterol crystals. Discussion: In conclusion, HSCT patients generally retained a fully functional complement system, whereas activation occurred in patients with severe complications. The complement-cytokine interaction indicates the potential for new complement-targeting therapeutic strategies in HSCT.


Assuntos
Ativação do Complemento , Citocinas , Transplante de Células-Tronco Hematopoéticas , Transplante Homólogo , Humanos , Masculino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Feminino , Pessoa de Meia-Idade , Adulto , Citocinas/metabolismo , Idoso , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Condicionamento Pré-Transplante/métodos , Adulto Jovem
2.
J Innate Immun ; 16(1): 324-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768576

RESUMO

INTRODUCTION: We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS: Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS: Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1ß, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1ß, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1ß, IL-6, IL-8, MIP-1α, and MIP-1ß), with minimal effects by C5-inhibition. CONCLUSION: A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.


Assuntos
Aspergilose , Aspergillus fumigatus , Ativação do Complemento , Citocinas , Escherichia coli , Esporos Fúngicos , Aspergillus fumigatus/imunologia , Humanos , Ativação do Complemento/imunologia , Citocinas/metabolismo , Esporos Fúngicos/imunologia , Aspergilose/imunologia , Escherichia coli/imunologia , Antígeno CD11b/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Imunidade Inata , Inflamação/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Células Cultivadas , Monócitos/imunologia
3.
J Immunol ; 212(9): 1493-1503, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488502

RESUMO

Previous studies of pattern recognition molecules (PRMs) of the complement system have revealed difficulties in observing binding on pathogens such as Aspergillus fumigatus and Escherichia coli, despite complement deposition indicative of classical and lectin pathway activation. Thus, we investigated the binding dynamics of PRMs of the complement system, specifically C1q of the classical pathway and mannose-binding lectin (MBL) of the lectin pathway. We observed consistently increasing deposition of essential complement components such as C4b, C3b, and the terminal complement complex on A. fumigatus and E. coli. However, C1q and MBL binding to the surface rapidly declined during incubation after just 2-4 min in 10% plasma. The detachment of C1q and MBL can be linked to complement cascade activation, as the PRMs remain bound in the absence of plasma. The dissociation and the fate of C1q and MBL seem to have different mechanistic functions. Notably, C1q dynamics were associated with local C1 complex activation. When C1s was inhibited in plasma, C1q binding not only remained high but further increased over time. In contrast, MBL binding was inversely correlated with total and early complement activation due to MBL binding being partially retained by complement inhibition. Results indicate that detached MBL might be able to functionally rebind to A. fumigatus. In conclusion, these results reveal a (to our knowledge) novel "hit-and-run" complement-dependent PRM dynamic mechanism on pathogens. These dynamics may have profound implications for host defense and may help increase the functionality and longevity of complement-dependent PRMs in circulation.


Assuntos
Complemento C1q , Lectina de Ligação a Manose , Escherichia coli/metabolismo , Lectina de Ligação a Manose/metabolismo , Proteínas do Sistema Complemento , Ativação do Complemento , Lectinas/metabolismo , Lectina de Ligação a Manose da Via do Complemento
4.
J Leukoc Biol ; 115(4): 647-663, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38057165

RESUMO

The lepirudin-based human whole blood model is a well-established ex vivo system to characterize inflammatory responses. However, the contribution of individual cell populations to cytokine release has not been investigated. Thus, we modified the model by selectively removing leukocyte subpopulations to elucidate their contribution to the inflammatory response. Lepirudin-anticoagulated whole blood was depleted from monocytes or granulocytes using StraightFrom Whole Blood MicroBeads. Reconstituted blood was incubated with Escherichia coli (108/mL) for 2 hours at 37 °C. CD11b, CD62P, and CD63 were detected by flow cytometry. Complement (C3bc, sC5b-9) and platelet activation (platelet factor 4, NAP-2) were measured by enzyme-linked immunosorbent assay. Cytokines were quantified by multiplex assay. A significant (P < 0.05) specific depletion of the monocyte (mean = 86%; 95% confidence interval = 71%-92%) and granulocyte (mean = 97%; 95% confidence interval = 96%-98%) population was obtained. Background activation induced by the depletion protocol was negligible for complement (C3bc and sC5b-9), leukocytes (CD11b), and platelets (NAP-2). Upon Escherichia coli incubation, release of 10 of the 24 cytokines was solely dependent on monocytes (interleukin [IL]-1ß, IL-2, IL-4, IL-5, IL-17A, interferon-γ, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein-1α, and fibroblast growth factor-basic), whereas 8 were dependent on both monocytes and granulocytes (IL-1ra, IL-6, IL-8, IL-9, IL-10, macrophage inflammatory protein-1ß, tumor necrosis factor, and eotaxin). Six cytokines were not monocyte or granulocyte dependent, of which platelet-derived growth factor and RANTES were mainly platelet dependent. We document an effective model for selective depletion of leukocyte subpopulations from whole blood, without causing background activation, allowing in-depth cellular characterization. The results are in accordance with monocytes playing a major role in cytokine release and expand our knowledge of the significant role of granulocytes in the response to E. coli.


Assuntos
Citocinas , Monócitos , Humanos , Citocinas/metabolismo , Monócitos/metabolismo , Escherichia coli , Granulócitos/metabolismo , Proteínas do Sistema Complemento/metabolismo
5.
J Immunol ; 209(9): 1760-1767, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104112

RESUMO

Bacterial and mitochondrial DNA, sharing an evolutionary origin, act as danger-associated molecular patterns in infectious and sterile inflammation. They both contain immunomodulatory CpG motifs. Interactions between CpG motifs and the complement system are sparsely described, and mechanisms of complement activation by CpG remain unclear. Lepirudin-anticoagulated human whole blood and plasma were incubated with increasing concentrations of three classes of synthetic CpGs: CpG-A, -B, and -C oligodeoxynucleotides and their GpC sequence controls. Complement activation products were analyzed by immunoassays. Cytokine levels were determined via 27-plex beads-based immunoassay, and CpG interactions with individual complement proteins were evaluated using magnetic beads coated with CpG-B. In whole blood and plasma, CpG-B and CpG-C (p < 0.05 for both), but not CpG-A (p > 0.8 for all), led to time- and dose-dependent increase of soluble C5b-9, the alternative complement convertase C3bBbP, and the C3 cleavage product C3bc. GpC-A, -B, and -C changed soluble fluid-phase C5b-9, C3bBbP, and C3bc to the same extent as CpG-A, -B, and -C, indicating a DNA backbone-dependent effect. Dose-dependent CpG-B binding was found to C1q (r = 0.83; p = 0.006) and factor H (r = 0.93; p < 0.001). The stimulatory complement effect was partly preserved in C2-deficient plasma and completely preserved in MASP-2-deficient serum. CpG-B increased levels of IL-1ß, IL-2, IL-6, IL-8, MCP-1, and TNF in whole blood, which were completely abolished by inhibition of C5 and C5aR1 (p < 0.05 for all). In conclusion, synthetic analogs of bacterial and mitochondrial DNA activate the complement system via the DNA backbone. We suggest that CpG-B interacts directly with classical and alternative pathway components, resulting in complement-C5aR1-dependent cytokine release.


Assuntos
Citocinas , Oligodesoxirribonucleotídeos , Humanos , Ativação do Complemento , Complemento C1q , Fator H do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , DNA Mitocondrial , Interleucina-2/farmacologia , Interleucina-6/farmacologia , Interleucina-8 , Serina Proteases Associadas a Proteína de Ligação a Manose , Oligodesoxirribonucleotídeos/farmacologia , Ilhas de CpG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA