Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(17): 5729-5748, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787573

RESUMO

Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
2.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503085

RESUMO

Background: Recent advances in resting-state fMRI allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. However, most dynamic studies still use subject-specific, spatially-static nodes. As recent studies have demonstrated, incorporating time-resolved spatial properties is crucial for precise functional connectivity estimation and gaining unique insights into brain function. Nevertheless, estimating time-resolved networks poses challenges due to the low signal-to-noise ratio, limited information in short time segments, and uncertain identification of corresponding networks within and between subjects. Methods: We adapt a reference-informed network estimation technique to capture time-resolved spatial networks and their dynamic spatial integration and segregation. We focus on time-resolved spatial functional network connectivity (spFNC), an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to multi-factorial genomic data. Results: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and align with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spFNC exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and correlates with genetic risk for schizophrenia. This dysfunction is also reflected in high-dimensional (voxel-level) space in regions with weak functional connectivity to corresponding networks. Conclusions: Our method can effectively capture spatially dynamic networks, detect nuanced SZ effects, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the potential of dynamic spatial dependence and weak connectivity in the clinical landscape.

3.
J Neurosci Methods ; 389: 109794, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652974

RESUMO

The past 10 years have seen an explosion of approaches that focus on the study of time-resolved change in functional connectivity (FC). FC characterization among networks at a whole-brain level is frequently termed functional network connectivity (FNC). Time-resolved or dynamic functional network connectivity (dFNC) focuses on the estimation of transient, recurring, whole-brain patterns of FNC. While most approaches in this area have attempted to capture dynamic linear correlation, we are particularly interested in whether explicitly nonlinear relationships, above and beyond linear, are present and contain unique information. This study thus proposes an approach to assess explicitly nonlinear dynamic functional network connectivity (EN dFNC) derived from the relationship among independent component analysis time courses. Linear relationships were removed at each time point to evaluate, typically ignored, explicitly nonlinear dFNC using normalized mutual information (NMI). Simulations showed the proposed method estimated explicitly nonlinearity over time, even within relatively short windows of data. We then, applied our approach on 151 schizophrenia patients, and 163 healthy controls fMRI data and found three unique, highly structured, mostly long-range, functional states that also showed significant group differences. In particular, explicitly nonlinear relationships tend to be more widespread than linear ones. Results also highlighted a state with long range connections to the visual domain, which were significantly reduced in schizophrenia. Overall, this work suggests that quantifying EN dFNC may provide a complementary and potentially valuable tool for studying brain function by exposing relevant variation that is typically ignored.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Dinâmica não Linear , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Esquizofrenia/diagnóstico por imagem
4.
Neuroimage ; 251: 119013, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35189361

RESUMO

Resting-state functional magnetic resonance imaging is currently the mainstay of functional neuroimaging and has allowed researchers to identify intrinsic connectivity networks (aka functional networks) at different spatial scales. However, little is known about the temporal profiles of these networks and whether it is best to model them as continuous phenomena in both space and time or, rather, as a set of temporally discrete events. Both categories have been supported by series of studies with promising findings. However, a critical question is whether focusing only on time points presumed to contain isolated neural events and disregarding the rest of the data is missing important information, potentially leading to misleading conclusions. In this work, we argue that brain networks identified within the spontaneous blood oxygenation level-dependent (BOLD) signal are not limited to temporally sparse burst moments and that these event present time points (EPTs) contain valuable but incomplete information about the underlying functional patterns. We focus on the default mode and show evidence that is consistent with its continuous presence in the BOLD signal, including during the event absent time points (EATs), i.e., time points that exhibit minimum activity and are the least likely to contain an event. Moreover, our findings suggest that EPTs may not contain all the available information about their corresponding networks. We observe distinct default mode connectivity patterns obtained from all time points (AllTPs), EPTs, and EATs. We show evidence of robust relationships with schizophrenia symptoms that are both common and unique to each of the sets of time points (AllTPs, EPTs, EATs), likely related to transient patterns of connectivity. Together, these findings indicate the importance of leveraging the full temporal data in functional studies, including those using event-detection approaches.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA