Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297768

RESUMO

The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.

2.
J Hazard Mater ; 426: 127811, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34844799

RESUMO

This study provided a novel pathway to develop activated carbon with enhanced adsorption performance via feedstock pretreatment by fungi. The growth of Pleurotus ostreatus on cottonseed husks offered this feedstock an advantageous pore size for porous carbon making. The prepared activated carbons derived from cottonseed husks (CSH-ACs) during different fungal growth periods exhibited extraordinary performance than commercial activated carbon for sulfanilamide adsorptive removal. Their experimental data of adsorption capacities for sulfanilamide were 139.43, 146.15, and 146.16 mg g-1, respectively. The adsorption behaviors of sulfanilamide on CSH-ACs were evaluated by kinetic, isotherm and thermodynamic models. Pore filling, hydrogen-bond forming and π-π staking interactions all contributed to the rapid sulfanilamide removal. The microporous-mesoporous structure, stronger hydrophilicity, and richer functional groups moieties owing to the lignocellulose decomposition in the plant wall significantly strengthened the adsorption process on the microbial-mediated activated carbon. The effects of pH and water impurities (H2PO4-, CO32-, SO42-, Cl-, and humic acid) on sulfanilamide removal were investigated by a single factor experimental design. Results indicated that CSH-ACs were suitable for sulfanilamide removal in actual wastewater treatment with wide pH adaptability and resilience to interference.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Óleo de Sementes de Algodão , Concentração de Íons de Hidrogênio , Cinética , Sulfanilamida
3.
Vaccines (Basel) ; 9(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375677

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the only zoonotic-origin coronavirus (CoV) that has reached the pandemic stage. The virus uses its spike (S) glycoprotein to attach to the host cells and initiate a cascade of events that leads to infection. It has sternly affected public health, economy, education, and social behavior around the world. Several scientific and medical communities have mounted concerted efforts to limit this pandemic and the subsequent wave of viral spread by developing preventative and potential vaccines. So far, no medicine or vaccine has been approved to prevent or treat coronavirus disease 2019 (COVID-19). This review describes the latest advances in the development of SARS-CoV-2 vaccines for humans, mainly focusing on the lead candidates in clinical trials. Moreover, we seek to provide both the advantages and the disadvantages of the leading platforms used in current vaccine development, based on past vaccine delivery efforts for non-SARS CoV-2 infections. We also highlight the population groups who should receive a vaccine against COVID-19 in a timely manner to eradicate the pandemic rapidly.

4.
Curr Pharm Des ; 25(6): 642-653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914015

RESUMO

MicroRNA (miRNAs), a class of small, endogenous non-coding RNA molecules of about 21-24 nucleotides in length, have unraveled a new modulatory network of RNAs that form an additional level of posttranscriptional gene regulation by targeting messenger RNAs (mRNAs). These miRNAs possess the ability to regulate gene expression by modulating the stability of mRNAs, controlling their translation rates, and consequently regulating protein synthesis. Substantial experimental evidence established the involvement of miRNAs in most biological processes like growth, differentiation, development, and metabolism in mammals including humans. An aberrant expression of miRNAs has been implicated in several pathologies, including cancer. The association of miRNAs with tumor growth, development, and metastasis depicts their potential as effective diagnostic and prognostic biomarkers. Furthermore, exploitation of the role of different miRNAs as oncogenes or tumor suppressors has aided in designing several miRNA-based therapeutic approaches for treating cancer patients whose clinical trials are underway. In this review, we aim to summarize the biogenesis of miRNAs and the dysregulations in these pathways that result in various pathologies and in some cases, resistance to drug treatment. We provide a detailed review of the miRNA expression signatures in different cancers along with their diagnostic and prognostic utility. Furthermore, we elaborate on the potential employment of miRNAs to enhance cancer cell apoptosis, regress tumor progression and even overcome miRNA-induced drug resistance.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Animais , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Oncogenes , RNA Mensageiro
5.
Curr Pharm Des ; 24(24): 2839-2848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30205794

RESUMO

The FOXO (Forkhead box O) transcription factors are implicated in several signaling pathways and play a vital role in various cellular and physiological processes include for instance, ROS (reactive oxygen species) response, cell proliferation, regulation of programmed cell death, longevity, metabolism and cancer and regulation of cell cycle. In humans, the four FOXO family members are responsible for resemblance in their structure, regulation and functions. FOXO1 gene is highly expressed in adipose tissues and it affects the regulation of glycogenolysis and gluconeogenesis through insulin signaling. The gene of FOXO3 is highly expressed in the kidney, heart, spleen and brain and is characterized as diverse forkhead DNA-binding domain of transcription factors. The FOXO3 is a tumor suppressor gene and found to interact with p53, the trigger for apoptosis through BCl2 family genes and a regulator of Notch signaling pathway for the self-renewal of stem cells. Therefore, FOXOs remains to be a fascinating and potential target to acquire novel therapeutic approaches to cure cancer. This review will provide a comprehensive overview about the biology of FOXO proteins, which can be utilized for developing current therapeutic approaches to treat cancer.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Humanos , Hipoglicemiantes/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
World J Hepatol ; 8(12): 545-56, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27134702

RESUMO

Chronic hepatitis C virus (HCV) infection exhibits a wide range of extrahepatic complications, affecting various organs in the human body. Numerous HCV patients suffer neurological manifestations, ranging from cognitive impairment to peripheral neuropathy. Overexpression of the host immune response leads to the production of immune complexes, cryoglobulins, as well as autoantibodies, which is a major pathogenic mechanism responsible for nervous system dysfunction. Alternatively circulating inflammatory cytokines and chemokines and HCV replication in neurons is another factor that severely affects the nervous system. Furthermore, HCV infection causes both sensory and motor peripheral neuropathy in the mixed cryoglobulinemia as well as known as an important risk aspect for stroke. These extrahepatic manifestations are the reason behind underlying hepatic encephalopathy and chronic liver disease. The brain is an apt location for HCV replication, where the HCV virus may directly wield neurotoxicity. Other mechanisms that takes place by chronic HCV infection due the pathogenesis of neuropsychiatric disorders includes derangement of metabolic pathways of infected cells, autoimmune disorders, systemic or cerebral inflammation and alterations in neurotransmitter circuits. HCV and its pathogenic role is suggested by enhancement of psychiatric and neurological symptoms in patients attaining a sustained virologic response followed by treatment with interferon; however, further studies are required to fully assess the impact of HCV infection and its specific antiviral targets associated with neuropsychiatric disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA