Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324919

RESUMO

We present a strategy for electrochemical measurements using a durable minute bubble wall with a thickness of 27 µm (D = 1.8 cm) as an innovative electrochemical medium. The composition, thickness, and volume of the tiny bubble film were investigated and estimated using the spectroscopic method and the Beer-Lambert law. A carbon microelectrode (D = 10 µm) was then employed as the working electrode, inserted through the bubble wall to function as the solution interface. First, the potential of this method for microelectrodeposition of metallic Ag and Pd films in a tiny bubble was investigated. Interestingly, microscopic images of the deposited film clearly demonstrated that the bubble thickness determines and confines the electrochemical deposition zone. In other words, innovative template-free microelectrodeposition was achieved. In the second phase of our work, microelectroanalysis of trace levels of nitrite ions was performed within the bubble wall and on a foam-covered hand, between the fingers directly, with a low limit of detection of 28 µM. This technique holds significance in criminal investigations, as the presence of NO2- ions on the hand indicates the potential presence of gunshot residue and aids in identifying suspects. In comparison to current methods, this approach is rapid, simple, cost-effective, and amenable to on-site applications, eliminating the need for sample treatment. Ultimately, the utilization of a bubble wall as a novel electrochemical microreactor can open new ways in microelectrochemical analysis, presenting novel opportunities and applications in the field of electrochemical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA