Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO Rep ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390257

RESUMO

Stress granules (SG) are membraneless ribonucleoprotein-based cytoplasmic organelles that assemble in response to stress. Their formation is often associated with an almost global suppression of translation, and the aberrant assembly or disassembly of these granules has pathological implications in neurodegeneration and cancer. In cancer, and particularly in the presence of oncogenic KRAS mutations, in vivo studies concluded that SG increase the resistance of cancer cells to stress. Hence, SG have recently been considered a promising target for therapy. Here, starting from our observations that genes coding for SG proteins are stimulated during development of pancreatic ductal adenocarcinoma, we analyze the formation of SG during tumorigenesis. We resort to in vitro, in vivo and in silico approaches, using mouse models, human samples and human data. Our analyses do not support that SG are formed during tumorigenesis of KRAS-driven cancers, at least that their presence is not universal, leading us to propose that caution is required before considering SG as therapeutic targets.

2.
Epigenomes ; 8(3)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39051182

RESUMO

Human tumors progress in part by accumulating epigenetic alterations, which include gains and losses of DNA methylation in different parts of the cancer cell genome. Recent work has revealed a link between these two opposite alterations by showing that DNA hypomethylation in tumors can induce the expression of transcripts that overlap downstream gene promoters and thereby induce their hypermethylation. Preliminary in silico evidence prompted us to investigate if this mechanism applies to the locus harboring AGO1, a gene that plays a central role in miRNA biogenesis and RNA interference. Inspection of public RNA-Seq datasets and RT-qPCR experiments show that an alternative transcript starting 13.4 kb upstream of AGO1 (AGO1-V2) is expressed specifically in testicular germ cells, and becomes aberrantly activated in different types of tumors, particularly in tumors of the esophagus, stomach, and lung. This expression pattern classifies AGO1-V2 into the group of "Cancer-Germline" (CG) genes. Analysis of transcriptomic and methylomic datasets provided evidence that transcriptional activation of AGO1-V2 depends on DNA demethylation of its promoter region. Western blot experiments revealed that AGO1-V2 encodes a shortened isoform of AGO1, corresponding to a truncation of 75 aa in the N-terminal domain, and which we therefore referred to as "∆NAGO1". Interestingly, significant correlations between hypomethylation/activation of AGO1-V2 and hypermethylation/repression of AGO1 were observed upon examination of tumor cell lines and tissue datasets. Overall, our study reveals the existence of a process of interdependent epigenetic alterations in the AGO1 locus, which promotes swapping between two AGO1 protein-coding mRNA isoforms in tumors.

3.
Sci Rep ; 11(1): 17346, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462486

RESUMO

Tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark deposited during transcriptional elongation and known to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of regional DNA hypermethylation. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo/hypermethylation, and some of these included tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


Assuntos
Adenocarcinoma/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Antígenos de Neoplasias/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/genética , Mineração de Dados , Epigenômica , Regulação Neoplásica da Expressão Gênica , Genômica , Histonas/química , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Proteínas de Neoplasias/genética , RNA-Seq , Receptores de GABA-A/genética
4.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33602788

RESUMO

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Assuntos
Células Acinares/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas , Proliferação de Células , Modelos Animais de Doenças , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Pancreatite/etiologia , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cytogenet Genome Res ; 159(1): 12-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31593956

RESUMO

The human genome harbors many duplicated segments, which sometimes show very high sequence identity. This may complicate assignment during genome assembly. One such example is in Xq28, where the arrangement of 2 recently duplicated segments varies between genome assembly versions. The duplicated segments comprise highly similar genes, including MAGEA3 and MAGEA6, which display specific expression in testicular germline cells, and also become aberrantly activated in a variety of tumors. Recently, a new gene was identified, CT-GABRA3, the transcription of which initiates inside the segmental duplication but extends far outside. According to the latest genome annotation, CT- GABRA3 starts near MAGEA3, with which it shares a bidirectional promoter. In an earlier annotation, however, the duplicated segment was positioned in the opposite orientation, and CT-GABRA3 was instead coupled with MAGEA6. To resolve this discrepancy, and based on the contention that genes connected by a bidirectional promoter are almost always co-expressed, we decided to compare the expression profiles of CT-GABRA3, MAGEA3, and MAGEA6. We found that in tumor tissues and cell lines of different origins, the expression of CT-GABRA3 was better correlated with that of MAGEA6. Moreover, in a cellular model of experimental induction with a DNA demethylation agent, activation CT-GABRA3 was associated with that of MAGEA6, but not with that of MAGEA3. Together these results support a connection between CT-GABRA3 and MAGEA6 and illustrate how promoter-sharing genes can be exploited to resolve genome assembly uncertainties.


Assuntos
Antígenos de Neoplasias/genética , Cromossomos Humanos X/genética , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Receptores de GABA-A/genética , Duplicações Segmentares Genômicas/genética , Antígenos de Neoplasias/metabolismo , Epigênese Genética/genética , Duplicação Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA