RESUMO
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with differing metastatic potential in a 3D collagen gel bioreactor system. Methods: Within the bioreactor, hyperpolarized magnetic resonance spectroscopy (HP-MRS) is used to image lactate/pyruvate ratios, while fluorescence lifetime imaging microscopy (FLIM) of endogenous metabolites measures metabolism at the cellular scale. Results: HP-MRS results showed no lactate peak for 67NR and a comparatively large lactate/pyruvate ratio for both 4T1 and 4T07 cell lines, suggestive of greater pyruvate utilization with greater metastatic potential. Similar patterns were observed using FLIM with significant increases in FAD intensity, redox ratio, and NAD(P)H lifetime. The lactate/pyruvate ratio was strongly correlated to NAD(P)H lifetime, consistent with the role of NADH as an electron donor for the glycolytic pathway, suggestive of an overall upregulation of metabolism (both glycolytic and oxidative), for the 4T07 and 4T1 cell lines compared to the non-metastatic 67NR cell line. Conclusions: These findings support a complementary role for HP-MRS and FLIM enabled by a novel collagen gel bioreactor system to investigate metastatic potential and cancer metabolism.
RESUMO
BACKGROUND: MRI with xenon-129 gas (Xe MRI) can assess airflow obstruction and heterogeneity in lung diseases. Specifically, Xe MRI may represent a sensitive modality for future therapeutic trials of cystic fibrosis (CF) therapies. The reproducibility of Xe MRI has not yet been assessed in the context of a multi-site study. PURPOSE: To determine the same-day repeatability and 28-day reproducibility of Xe MRI in children with CF. STUDY TYPE: Four-center prospective, longitudinal. POPULATION: Thirty-eight children (18 females, 47%), median interquartile range (IQR) age 12 (9-14) years old, with mild CF (forced expiratory volume in 1 second (FEV1) ≥85% predicted). FIELD STRENGTH/SEQUENCE: 3-T, two-dimensional (2D) gradient-echo (GRE) sequence. ASSESSMENT: Xe MRI, FEV1, and nitrogen multiple-breath wash-out for lung-clearance index (LCI2.5) were performed. To assess same-day reproducibility, Xe MRI was performed twice within the first visit, and procedures were repeated at 28 days. Xe hypoventilation was quantified using ventilation-defect percentage (VDP) and reader-defect volume (RDV). For VDP, hypoventilated voxels from segmented images were identified using a threshold of <60% mean whole-lung signal and expressed as a percentage of the lung volume. For RDV, hypoventilation was identified by two trained readers and expressed as a percentage. STATISTICAL TESTS: Inter-site comparisons were conducted using Kruskal-Wallis nonparametric tests with Dunn's multiple-comparisons tests. Differences for individuals were assessed using Wilcoxon matched-pairs tests. Bland-Altman tests were used to evaluate same-day repeatability, 28-day reproducibility, and inter-reader agreement. A P-value ≤0.05 was considered significant. RESULTS: Median FEV1 %-predicted was 96.8% (86%-106%), and median LCI2.5 was 6.6 (6.3-7.4). Xe MRI had high same-day reproducibility (mean VDP difference 0.12%, 95% limits of agreement [-3.2, 3.4]; mean RDV difference 0.42% [-2.5, 3.3]). At 28 days, 26/31 participants (84%) fell within the same-day 95% limits of agreement. DATA CONCLUSION: Xe MRI may offer excellent same-day and short-term reproducibility. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
RESUMO
Objective.The objective of this work is to: (1) demonstrate fluorine-19 (19F) MRI on a 3T clinical system with a large field of view (FOV) multi-channel torso coil (2) demonstrate an example parameter selection optimization for a19F agent to maximize the signal-to-noise ratio (SNR)-efficiency for spoiled gradient echo (SPGR), balanced steady-state free precession (bSSFP), and phase-cycled bSSFP (bSSFP-C), and (3) validate detection feasibility inex vivotissues.Approach.Measurements were conducted on a 3.0T Discovery MR750w MRI (GE Healthcare, USA) with an 8-channel1H/19F torso coil (MRI Tools, Germany). Numerical simulations were conducted for perfluoropolyether to determine the theoretical parameters to maximize SNR-efficiency for the sequences. Theoretical parameters were experimentally verified, and the sensitivity of the sequences was compared with a 10 min acquisition time with a 3.125 × 3.125 × 3 mm3in-plane resolution. Feasibility of a bSSFP-C was also demonstrated in phantom andex vivotissues.Main Results. Flip angles (FAs) of 12 and 64° maximized the signal for SPGR and bSSFP, and validation of optimal FA and receiver bandwidth showed close agreement with numerical simulations. Sensitivities of 2.47, 5.81, and 4.44ms-0.5mM-1 and empirical detection limits of 20.3, 1.5, and 6.2 mM were achieved for SPGR, bSSFP, and bSSFP-C, respectively. bSSFP and bSSFP-C achieved 1.8-fold greater sensitivity over SPGR (p< 0.01).Significance.bSSFP-C was able to improve sensitivity relative to simple SPGR and reduce both bSSFP banding effects and imaging time. The sequence was used to demonstrate the feasibility of19F MRI at clinical FOVs and field strengths withinex-vivotissues.
Assuntos
Estudos de Viabilidade , Razão Sinal-Ruído , Tronco , Humanos , Tronco/diagnóstico por imagem , Imagens de Fantasmas , Imagem por Ressonância Magnética de Flúor-19/instrumentação , Imagem por Ressonância Magnética de Flúor-19/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentaçãoRESUMO
Background. Thoracoabdominal MRI is limited by respiratory motion, especially in populations who cannot perform breath-holds. One approach for reducing motion blurring in radially-acquired MRI is respiratory gating. Straightforward 'hard-gating' uses only data from a specified respiratory window and suffers from reduced SNR. Proposed 'soft-gating' reconstructions may improve scan efficiency but reduce motion correction by incorporating data with nonzero weight acquired outside the specified window. However, previous studies report conflicting benefits, and importantly the choice of soft-gated weighting algorithm and effect on image quality has not previously been explored. The purpose of this study is to map how variable soft-gated weighting functions and parameters affect signal and motion blurring in respiratory-gated reconstructions of radial lung MRI, using neonates as a model population.Methods. Ten neonatal inpatients with respiratory abnormalities were imaged using a 1.5 T neonatal-sized scanner and 3D radial ultrashort echo-time (UTE) sequence. Images were reconstructed using ungated, hard-gated, and several soft-gating weighting algorithms (exponential, sigmoid, inverse, and linear weighting decay outside the period of interest), with %Nprojrepresenting the relative amount of data included. The apparent SNR (aSNR) and motion blurring (measured by the maximum derivative of image intensity at the diaphragm, MDD) were compared between reconstructions.Results. Soft-gating functions produced higher aSNR and lower MDD than hard-gated images using equivalent %Nproj, as expected. aSNR was not identical between different gating schemes for given %Nproj. While aSNR was approximately linear with %Nprojfor each algorithm, MDD performance diverged between functions as %Nprojdecreased. Algorithm performance was relatively consistent between subjects, except in images with high noise.Conclusion. The algorithm selection for soft-gating has a notable effect on image quality of respiratory-gated MRI; the timing of included data across the respiratory phase, and not simply the amount of data, plays an important role in aSNR. The specific soft-gating function and parameters should be considered for a given imaging application's requirements of signal and sharpness.
Assuntos
Imageamento Tridimensional , Pulmão , Recém-Nascido , Humanos , Imageamento Tridimensional/métodos , Respiração , Imageamento por Ressonância Magnética/métodos , AlgoritmosAssuntos
Pulmão , Artéria Pulmonar , Análise de Onda de Pulso , Humanos , Artéria Pulmonar/diagnóstico por imagem , Reprodutibilidade dos Testes , Pulmão/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Imageamento por Ressonância Magnética/métodos , Testes de Função Respiratória , Estudos de ViabilidadeRESUMO
Magnetic resonance imaging (MRI) is a routine diagnostic modality in oncology that produces excellent imaging resolution and tumor contrast without the use of ionizing radiation. However, improved contrast agents are still needed to further increase detection sensitivity and avoid toxicity/allergic reactions associated with paramagnetic metal contrast agents, which may be seen in a small percentage of the human population. Fluorine-19 (19F)-MRI is at the forefront of the developing MRI methodologies due to near-zero background signal, high natural abundance of 100%, and unambiguous signal specificity. In this study, we have developed a colloidal nanoemulsion (NE) formulation that can encapsulate high volumes of the fluorous MRI tracer, perfluoro-[15-crown-5]-ether (PFCE) (35% v/v). These nanoparticles exhibit long-term (at least 100 days) stability and high PFCE loading capacity in formulation with our semifluorinated triblock copolymer, M2F8H18. With sizes of approximately 200 nm, these NEs enable in vivo delivery and passive targeting to tumors. Our diagnostic formulation, M2F8H18/PFCE NE, yielded in vivo 19F-MR images with a high signal-to-noise ratio up to 100 in a tumor-bearing mouse model at clinically relevant scan times. M2F8H18/PFCE NE circulated stably in the vasculature, accumulated in high concentration of an estimated 4-9 × 1017 19F spins/voxel at the tumor site, and cleared from most organs over the span of 2 weeks. Uptake by the mononuclear phagocyte system to the liver and spleen was also observed, most likely due to particle size. These promising results suggest that M2F8H18/PFCE NE is a favorable 19F-MR diagnostic tracer for further development in oncological studies and potential clinical translation.
Assuntos
Imagem por Ressonância Magnética de Flúor-19 , Neoplasias , Camundongos , Humanos , Animais , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Razão Sinal-Ruído , FígadoRESUMO
Internal normalisation to reference structures on quantitative chest CT imaging (e.g. lung airway dimensions to adjacent vascular dimensions) provides a potential way to standardise image measurements to population characteristics https://bit.ly/3Rh9pnW.
RESUMO
Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.
Assuntos
Asma , Eosinofilia , Obesidade , Tomografia Computadorizada por Raios X , Humanos , Asma/diagnóstico por imagem , Asma/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Adulto , Eosinofilia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Índice de Massa CorporalRESUMO
BACKGROUNDInformation about the size, airway location, and longitudinal behavior of mucus plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to rationally design muco-active treatments.METHODSCT lung scans from 57 patients with asthma were analyzed to quantify mucus plug size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-processing pipeline to generate size and location information that was related to measures of airflow.RESULTSThe length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm length defined short ("stubby", ≤12 mm) and long ("stringy", >12 mm) plug phenotypes. High mucus plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized predominantly to airway generations 6-9, and 47% of plugs in baseline scans persisted in the same airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations had greater effects on spirometry measures than plugs in smaller distal generations, and a model of airflow that estimates the increased airway resistance attributable to plugs predicted a greater effect for proximal generations and more numerous mucus plugs.CONCLUSIONPersistent mucus plugs in proximal airway generations occur in asthma and demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-active drugs or bronchoscopy.TRIAL REGISTRATIONClinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01716494, and NCT01760915.FUNDINGAstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi-Genzyme-Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical Centers beyond the third year of patient follow-up. These companies had no role in study design or data analysis, and the only restriction on the funds was that they be used to support the SARP initiative.
Assuntos
Asma , Humanos , Broncoscopia , Pulmão/diagnóstico por imagem , Muco , Tomografia Computadorizada por Raios XRESUMO
Purpose: The purpose of this study was to anatomically correlate ventilation defects with regions of air trapping by whole lung, lung lobe, and airway segment in the context of airway mucus plugging in asthma. Methods: A total of 34 asthmatics [13M:21F, 13 mild/moderate, median age (range) of 49.5 (36.8-53.3) years and 21 severe, 56.1 (47.1-62.6) years] and 4 healthy subjects [1M:3F, 38.5 (26.6-52.2) years] underwent HP 3He MRI and CT imaging. HP 3He MRI was assessed for ventilation defects using a semi-automated k-means clustering algorithm. Inspiratory and expiratory CTs were analyzed using parametric response mapping (PRM) to quantify markers of emphysema and functional small airways disease (fSAD). Segmental and lobar lung masks were obtained from CT and registered to HP 3He MRI in order to localize ventilation defect percent (VDP), at the lobar and segmental level, to regions of fSAD and mucus plugging. Spearman's correlation was utilized to compare biomarkers on a global and lobar level, and a multivariate analysis was conducted to predict segmental fSAD given segmental VDP (sVDP) and mucus score as variables in order to further understand the functional relationships between regional measures of obstruction. Results: On a global level, fSAD was correlated with whole lung VDP (r = 0.65, p < 0.001), mucus score (r = 0.55, p < 0.01), and moderately correlated (-0.60 ≤ r ≤ -0.56, p < 0.001) to percent predicted (%p) FEV1, FEF25-75 and FEV1/FVC, and more weakly correlated to FVC%p (-0.38 ≤ r ≤ -0.35, p < 0.001) as expected from previous work. On a regional level, lobar VDP, mucus scores, and fSAD were also moderately correlated (r from 0.45-0.66, p < 0.01). For segmental colocalization, the model of best fit was a piecewise quadratic model, which suggests that sVDP may be increasing due to local airway obstruction that does not manifest as fSAD until more extensive disease is present. sVDP was more sensitive to the presence of a mucus plugs overall, but the prediction of fSAD using multivariate regression showed an interaction in the presence of a mucus plugs when sVDP was between 4% and 10% (p < 0.001). Conclusion: This multi-modality study in asthma confirmed that areas of ventilation defects are spatially correlated with air trapping at the level of the airway segment and suggests VDP and fSAD are sensitive to specific sources of airway obstruction in asthma, including mucus plugs.
RESUMO
A measure of regional gas exchange on HP 129Xe MRI was able to detect apparent improvements in IPF patients treated with antifibrotic medication after 1â year, while no such improvements were found in patients treated with conventional therapies https://bit.ly/3ZXipzD.
RESUMO
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Assuntos
Pneumopatias , Enfisema Pulmonar , Humanos , Benchmarking , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Respiração , Imageamento por Ressonância Magnética/métodosRESUMO
Rationale: Extrapulmonary manifestations of asthma, including fatty infiltration in tissues, may reflect systemic inflammation and influence lung function and disease severity. Objectives: To determine if skeletal muscle adiposity predicts lung function trajectory in asthma. Methods: Adult SARP III (Severe Asthma Research Program III) participants with baseline computed tomography imaging and longitudinal postbronchodilator FEV1% predicted (median follow-up 5 years [1,132 person-years]) were evaluated. The mean of left and right paraspinous muscle density (PSMD) at the 12th thoracic vertebral body was calculated (Hounsfield units [HU]). Lower PSMD reflects higher muscle adiposity. We derived PSMD reference ranges from healthy control subjects without asthma. A linear multivariable mixed-effects model was constructed to evaluate associations of baseline PSMD and lung function trajectory stratified by sex. Measurements and Main Results: Participants included 219 with asthma (67% women; mean [SD] body mass index, 32.3 [8.8] kg/m2) and 37 control subjects (51% women; mean [SD] body mass index, 26.3 [4.7] kg/m2). Participants with asthma had lower adjusted PSMD than control subjects (42.2 vs. 55.8 HU; P < 0.001). In adjusted models, PSMD predicted lung function trajectory in women with asthma (ß = -0.47 Δ slope per 10-HU decrease; P = 0.03) but not men (ß = 0.11 Δ slope per 10-HU decrease; P = 0.77). The highest PSMD tertile predicted a 2.9% improvement whereas the lowest tertile predicted a 1.8% decline in FEV1% predicted among women with asthma over 5 years. Conclusions: Participants with asthma have lower PSMD, reflecting greater muscle fat infiltration. Baseline PSMD predicted lung function decline among women with asthma but not men. These data support an important role of metabolic dysfunction in lung function decline.
Assuntos
Asma , Pulmão , Adulto , Humanos , Feminino , Masculino , Adiposidade , Volume Expiratório Forçado , Obesidade , Músculo Esquelético/diagnóstico por imagemRESUMO
Background Idiopathic pulmonary fibrosis (IPF) is a temporally and spatially heterogeneous lung disease. Identifying whether IPF in a patient is progressive or stable is crucial for treatment regimens. Purpose To assess the role of hyperpolarized (HP) xenon 129 (129Xe) MRI measures of ventilation and gas transfer in IPF generally and as an early signature of future IPF progression. Materials and Methods In a prospective study, healthy volunteers and participants with IPF were consecutively recruited between December 2015 and August 2019 and underwent baseline HP 129Xe MRI and chest CT. Participants with IPF were followed up with forced vital capacity percent predicted (FVC%p), diffusing capacity of the lungs for carbon monoxide percent predicted (DLco%p), and clinical outcome at 1 year. IPF progression was defined as reduction in FVC%p by at least 10%, reduction in DLco%p by at least 15%, or admission to hospice care. CT and MRI were spatially coregistered and a measure of pulmonary gas transfer (red blood cell [RBC]-to-barrier ratio) and high-ventilation percentage of lung volume were compared across groups and across fibrotic versus normal-appearing regions at CT by using Wilcoxon signed rank tests. Results Sixteen healthy volunteers (mean age, 57 years ± 14 [SD]; 10 women) and 22 participants with IPF (mean age, 71 years ± 9; 15 men) were evaluated, as follows: nine IPF progressors (mean age, 72 years ± 7; five women) and 13 nonprogressors (mean age, 70 years ± 10; 11 men). Reduction of high-ventilation percent (13% ± 6.1 vs 8.2% ± 5.9; P = .03) and RBC-to-barrier ratio (0.26 ± 0.06 vs 0.20 ± 0.06; P = .03) at baseline were associated with progression of IPF. Participants with progressive disease had reduced RBC-to-barrier ratio in structurally normal-appearing lung at CT (0.21 ± 0.07 vs 0.28 ± 0.05; P = .01) but not in fibrotic regions of the lung (0.15 ± 0.09 vs 0.14 ± 0.04; P = .62) relative to the nonprogressive group. Conclusion In this preliminary study, functional measures of gas transfer and ventilation measured with xenon 129 MRI and the extent of fibrotic structure at CT were associated with idiopathic pulmonary fibrosis disease progression. Differences in gas transfer were found in regions of nonfibrotic lung. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Gleeson and Fraser in this issue.
Assuntos
Fibrose Pulmonar Idiopática , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Testes de Função RespiratóriaRESUMO
Objective. We introduce an unsupervised motion-compensated reconstruction scheme for high-resolution free-breathing pulmonary magnetic resonance imaging.Approach. We model the image frames in the time series as the deformed version of the 3D template image volume. We assume the deformation maps to be points on a smooth manifold in high-dimensional space. Specifically, we model the deformation map at each time instant as the output of a CNN-based generator that has the same weight for all time-frames, driven by a low-dimensional latent vector. The time series of latent vectors account for the dynamics in the dataset, including respiratory motion and bulk motion. The template image volume, the parameters of the generator, and the latent vectors are learned directly from the k-t space data in an unsupervised fashion.Main results. Our experimental results show improved reconstructions compared to state-of-the-art methods, especially in the context of bulk motion during the scans.Significance. The proposed unsupervised motion-compensated scheme jointly estimates the latent vectors that capture the motion dynamics, the corresponding deformation maps, and the reconstructed motion-compensated images from the raw k-t space data of each subject. Unlike current motion-resolved strategies, the proposed scheme is more robust to bulk motion events during the scan.