Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Sci Educ ; 34(2): 309-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38686145

RESUMO

This study focuses on a subset of medical students who participated in an anatomy dissection program and undertook an additional self-directed learning (SDL) project investigating incidental findings of cadaveric pathology. The value of SDL activity is explored as a means of enhancing medical student education, particularly its student perceived value in preparing and developing them as future medical educators. It was assessed whether the project advanced student interest in medical education by analyzing their motivations for participation. The results of the study highlight the potential of SDL as an experiential learning opportunity for medical students and the role of anatomic pathology in connecting multiple domains of medical education.

2.
Chemosphere ; 330: 138738, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37084897

RESUMO

Maternal exposure to environmental contaminants during pregnancy poses a significant threat to a developing fetus, as these substances can easily cross the placenta and disrupt the neurodevelopment of offspring. Specifically, the hypothalamus is essential in the regulation of metabolism, notably during critical windows of development. An abnormal hormonal and inflammatory milieu during development can trigger persistent changes in the function of hypothalamic circuits, leading to long-lasting effects on the body's energy homeostasis and metabolism. We recently demonstrated that gestational exposure to clinically relevant levels of benzene induces severe metabolic dysregulation in the offspring. Given the central role of the hypothalamus in metabolic control, we hypothesized that prenatal exposure to benzene impacts hypothalamic development, contributing to the adverse metabolic effects in the offspring. C57BL/6JB dams were exposed to benzene at 50 ppm in the inhalation chambers exclusively during pregnancy (from E0.5 to E19). Transcriptomic analysis of the exposed offspring at postnatal day 21 (P21) revealed hypothalamic changes in genes related to metabolic regulation, inflammation, and neurodevelopment exclusively in males. Moreover, the hypothalamus of prenatally benzene-exposed male offspring displayed alterations in orexigenic and anorexigenic projections, impairments in leptin signaling, and increased microgliosis. Additional exposure to benzene during lactation did not promote further microgliosis or astrogliosis in the offspring, while the high-fat diet (HFD) challenge in adulthood exacerbated glucose metabolism and hypothalamic inflammation in benzene-exposed offspring of both sexes. These findings reveal the persistent adverse effects of prenatal benzene exposure on hypothalamic circuits and neuroinflammation, predisposing the offspring to long-lasting metabolic health conditions.


Assuntos
Doenças Metabólicas , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Camundongos , Masculino , Animais , Benzeno/toxicidade , Benzeno/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Camundongos Endogâmicos C57BL , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Doenças Metabólicas/metabolismo
3.
bioRxiv ; 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36711607

RESUMO

The hypothalamus is essential in the regulation of metabolism, notably during critical windows of development. An abnormal hormonal and inflammatory milieu during development can trigger persistent changes in the function of hypothalamic circuits, leading to long-lasting effects on the body’s energy homeostasis and metabolism. We recently demonstrated that gestational exposure to benzene at smoking levels induces severe metabolic dysregulation in the offspring. Given the central role of the hypothalamus in metabolic control, we hypothesized that prenatal exposure to benzene impacts hypothalamic development, contributing to the adverse metabolic effects in the offspring. C57BL/6JB dams were exposed to benzene in the inhalation chambers exclusively during pregnancy (from E0.5 to E19). The transcriptome analysis of the offspring hypothalamus at postnatal day 21 (P21) revealed changes in genes related to metabolic regulation, inflammation, and neurodevelopment exclusively in benzene-exposed male offspring. Moreover, the hypothalamus of prenatally benzene-exposed male offspring displayed alterations in orexigenic and anorexigenic projections, impairments in leptin signaling, and increased microgliosis. Additional exposure to benzene during lactation did not promote further microgliosis or astrogliosis in the offspring, while the high-fat diet (HFD) challenge in adulthood exacerbated glucose metabolism and hypothalamic inflammation in benzene-exposed offspring of both sexes. These findings reveal the persistent impact of prenatal benzene exposure on hypothalamic circuits and neuroinflammation, predisposing the offspring to long-lasting metabolic health conditions.

4.
Toxicol Sci ; 180(2): 252-261, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33502539

RESUMO

Environmental chemicals play a significant role in the development of metabolic disorders, especially when exposure occurs early in life. We have recently demonstrated that benzene exposure, at concentrations relevant to cigarette smoke, induces a severe metabolic imbalance in a sex-specific manner affecting male but not female mice. However, the roles of benzene in the development of aberrant metabolic outcomes following gestational exposure, remain largely unexplored. In this study, we exposed pregnant C57BL/6JB dams to benzene at 50 ppm or filtered air for 6 h/day from gestational day 0.5 (GD0.5) through GD21 and studied male and female offspring metabolic phenotypes in their adult life. While no changes in body weight or body composition were observed between groups, 4-month-old male and female offspring exhibited reduced parameters of energy homeostasis (VO2, VCO2, and heat production). However, only male offspring from benzene-exposed dams were glucose intolerant and insulin resistant at this age. By 6 months of age, both male and female offspring exhibited marked glucose intolerance however, only male offspring developed severe insulin resistance. This effect was accompanied by elevated insulin secretion and increased beta-cell mass only in male offspring. In support, Homeostatic Model Assessment for Insulin Resistance, the index of insulin resistance was elevated only in male but not in female offspring. Regardless, both male and female offspring exhibited a considerable increase in hepatic gene expression associated with inflammation and endoplasmic reticulum stress. Thus, gestational benzene exposure can predispose offspring to increased susceptibility to the metabolic imbalance in adulthood with differential sensitivity between sexes.


Assuntos
Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Benzeno/toxicidade , Feminino , Humanos , Insulina , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA