Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7794, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565625

RESUMO

In this study, a commercial dental resin was reinforced by SiO2 nanoparticles (NPs) with different concentrations to enhance its mechanical functionality. The material characterization and finite element analysis (FEA) have been performed to evaluate the mechanical properties. Wedge indentation and 3-point bending tests were conducted to assess the mechanical behavior of the prepared nanocomposites. The results revealed that the optimal content of NPs was achieved at 1% SiO2, resulting in a 35% increase in the indentation reaction force. Therefore, the sample containing 1% SiO2 NPs was considered for further tests. The morphology of selected sample was examined using field emission scanning electron microscopy (FE-SEM), revealing the homogeneous dispersion of SiO2 NPs with minimal agglomeration. X-ray diffraction (XRD) was employed to investigate the crystalline structure of the selected sample, indicating no change in the dental resin state upon adding SiO2 NPs. In the second part of the study, a novel approach called iterative FEA, supported by the experiment wedge indentation test, was used to determine the mechanical properties of the 1% SiO2-dental resin. Subsequently, the accurately determined material properties were assigned to a dental crown model to virtually investigate its behavior under oblique loading. The virtual test results demonstrated that most microcracks initiated from the top of the crown and extended through its thickness.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Resinas Compostas/química , Análise de Elementos Finitos , Nanopartículas/química , Fenômenos Mecânicos , Teste de Materiais
2.
Sci Rep ; 13(1): 16412, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775537

RESUMO

Piezoelectric nanogenerators (PENGs) have attracted great interest owing to their broad range application in environmental mechanical energy harvesting to power small electronic devices. In this study, novel flexible and high-performance double-layer sandwich-type PENGs based on one-dimensional (1-D) and two-dimensional (2-D) zinc oxide (ZnO) nanostructures and Ni foam as the middle layer have been developed. The morphology and structure of 1- and 2-D ZnO nanostructures have been studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). To investigate the effect of structural design on the piezoelectric performance, single-layer PENGs were also fabricated. The piezoelectric output of all prepared PENGs were evaluated under different human impacts at various forces and frequencies. The double-layer designed PENGs showed a two times larger voltage output compared to the single-layer PENGs, and the use of Ni foam as middle-layer and of 2-D ZnO nanosheets (compared to 1-D nanorods) was also found to increase the performance of the designed PENGs. The working mechanism of the prepared PENGs is also discussed. The design of nanogenerators as double-layer sandwich structures instead of two integrated single-layer devices reduces the overall preparation time and processing steps and enhances their output performance, thus opening the gate for widening their practical applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35919911

RESUMO

Background: Glass ceramic materials have multiple applications in various prosthetic fields. Despite the many advantages of these materials, they still have limitations such as fragility and surface machining and ease of repairing. Crack propagation has been a typical concern in fullceramic crowns, for which many successful numerical simulations have been carried out using the extended finite element method (XFEM). However, XFEM cannot correctly predict a primary crack growth direction under dynamic loading on the implant crown. Methods: In this work, the dental implant crown and abutment were modeled in CATIA V5R19 software using a CT-scan technique based on the human first molar. The crown was approximated with 39514 spherical particles to reach a reasonable convergence in the results. In the present work, glass ceramic was considered the crown material on a titanium abutment. The simulation was performed for an impactor with an initial velocity of 25 m/s in the implant-abutment axis direction. We took advantage of smooth particle hydrodynamics (SPH) such that the burden of defining a primary crack growth direction was suppressed. Results: The simulation results demonstrated that the micro-crack onset due to the impact wave in the ceramic crown first began from the crown incisal edge and then extended to the margin due to increased stress concentration near the contact region. At 23.36 µs, the crack growth was observed in two different directions based on the crown geometry, and at the end of the simulation, some micro-cracks were also initiated from the crown margin. Moreover, the results showed that the SPH algorithm could be considered an alternative robust tool to predict crack propagation in brittle materials, particularly for the implant crown under dynamic loading. Conclusion: The main achievement of the present study was that the SPH algorithm is a helpful tool to predict the crack growth pattern in brittle materials, especially for ceramic crowns under dynamic loading. The predicted crack direction showed that the initial crack was divided into two branches after its impact, leading to the crown fracture. The micro-crack initiated from the crown incisal edge and then extended to the crown margin due to the stress concentration near the contact area.

4.
Polymers (Basel) ; 12(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182391

RESUMO

In this research, piezoelectric polymer nanocomposite films were produced through solution mixing of laser-synthesized Au nanoparticles in poly (vinylidene fluoride) (PVDF) matrix. Synthetization of Au nanoparticles was carried out by laser ablation in N-methyle-2-pyrrolidene (NMP), and then it was added to PVDF: NMP solution with three different concentrations. Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out in order to study the crystalline structure of the nanocomposite films. Results revealed that a remakable change in crystalline polymorph of PVDF has occurred by embedding Au nanoparticles into the polymer matrix. The polar phase fraction was greatly improved by increasing the loading content of Au nanoparticle. Thermogravimetric analysis (TGA) showed that the nanocomposite films are more resistant to high temperature and thermal degradation. An increment in dielectric constant was noticed by increasing the concentration of Au nanoparticles through capacitance, inductance, and resistance (LCR) measurement. Moreover, the mechanical properties of nanocomposites were numerically anticipated by a finite element based micromechanical model. The results reveal an enhancement in both tensile and shear moduli.

5.
RSC Adv ; 9(18): 10117-10123, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520929

RESUMO

This study aimed to develop a novel hybrid piezoelectric structure based on poly(vinylidene difluoride) nanofibers (PVDF NFs) and zinc oxide nanorods (ZnO NRs) which eliminate the need for post poling treatment in such hybrid structures. Mechanism of electrical performance enhancement of the hybrid structure is also discussed in this paper. To study the effect of hybridization on piezoelectric performance, pristine ZnO NRs and pristine PVDF NF nanogenerators were also fabricated. The piezoelectric performance of these three nanogenerators was evaluated under periodic deformation at low frequency. The output power of the hybrid structure was found to be enhanced compared to pristine ZnO NRs and PVDF NFs nanogenerators. Such simple hybrid devices that do not need to complicated post poling treatment are more efficient than previous hybrid PVDF/ZnO nanogenerators for practical application. This improved piezoelectric nanogenerator is expected to enable various applications in the field of self-powered devices and wearable energy harvesting to harvest mechanical energy from the human activities.

6.
Membranes (Basel) ; 5(1): 1-10, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25569360

RESUMO

Polyvinylidene fluoride (PVDF) membranes were exposed vertically to a high energy electron beam (EB) in air, at room temperature. The chemical changes were examined by Fourier Transform Infrared Spectroscopy (FTIR). The surface morphologies were studied by Scanning Electron Microscopy (SEM) and showed some changes in the pore size. Thermogravimetric (TGA) analysis represented an increase in the thermal stability of PVDF due to irradiation. Electron paramagnetic resonance (EPR) showed the presence of free radicals in the irradiated PVDF. The effect of EB irradiation on the electrical properties of the membranes was analyzed in order to determine the dielectric constant, and an increase in the dielectric constant was found on increasing the dose. The surface hydrophilicity of the modified membrane was characterized by water contact angle measurement. The contact angle decreased compared to the original angle, indicating an improvement of surface hydrophilicity. Filtration results also showed that the pure water flux (PWF) of the modified membrane was lower than that of the unirradiated membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA