RESUMO
Aims: Balance requires the cortical control of visual, somatosensory, and vestibular inputs. The aim of this cross-sectional study was to compare the contributions of each of these systems on postural control and cortical activity using a sensory reweighting approach between participants with Parkinson's disease (PD) and controls. Methods: Ten participants with PD (age: 72 ± 9; 3 women; Hoehn & Yahr: 2 [1.5 - 2.50]) and 11 controls (age: 70 ± 3; 4 women) completed a sensory organization test in virtual reality (VR-SOT) while cortical activity was being recorded using electroencephalography (EEG). Conditions 1 to 3 were completed on a stable platform; conditions 4 to 6 on a foam. Conditions 1 and 4 were done with eyes open; conditions 2 and 5 in a darkened VR environment; and conditions 3 and 6 in a moving VR environment. Linear mixed models were used to evaluate changes in center of pressure (COP) displacement and EEG alpha and theta/beta ratio power between the two groups across the postural control conditions. Condition 1 was used as reference in all analyses. Results: Participants with PD showed greater COP displacement than controls in the anteroposterior (AP) direction when relying on vestibular input (condition 5; p<0.0001). The mediolateral (ML) COP sway was greater in PD than in controls when relying on the somatosensory (condition 2; p = 0.03), visual (condition 4; p = 0.002), and vestibular (condition 5; p < 0.0001) systems. Participants with PD exhibited greater alpha power compared to controls when relying on visual input (condition 2; p = 0.003) and greater theta/beta ratio power when relying on somatosensory input (condition 4; p = 0.001). Conclusions: PD affects reweighting of postural control, exemplified by greater COP displacement and increased cortical activity. Further research is needed to establish the temporal dynamics between cortical activity and COP displacement.