Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Quant Plant Biol ; 5: e2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572078

RESUMO

Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.

2.
Nat Commun ; 14(1): 7500, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980360

RESUMO

Sanguina nivaloides is the main alga forming red snowfields in high mountains and Polar Regions. It is non-cultivable. Analysis of environmental samples by X-ray tomography, focused-ion-beam scanning-electron-microscopy, physicochemical and physiological characterization reveal adaptive traits accounting for algal capacity to reside in snow. Cysts populate liquid water at the periphery of ice, are photosynthetically active, can survive for months, and are sensitive to freezing. They harbor a wrinkled plasma membrane expanding the interface with environment. Ionomic analysis supports a cell efflux of K+, and assimilation of phosphorus. Glycerolipidomic analysis confirms a phosphate limitation. The chloroplast contains thylakoids oriented in all directions, fixes carbon in a central pyrenoid and produces starch in peripheral protuberances. Analysis of cells kept in the dark shows that starch is a short-term carbon storage. The biogenesis of cytosolic droplets shows that they are loaded with triacylglycerol and carotenoids for long-term carbon storage and protection against oxidative stress.


Assuntos
Cistos , Neve , Humanos , Cloroplastos/metabolismo , Cistos/metabolismo , Carbono/metabolismo , Amido/metabolismo
3.
Physiol Plant ; 175(4): e13988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616005

RESUMO

The streptophyte green algal class Zygnematophyceae is the immediate sister lineage to land plants. Their special form of sexual reproduction via conjugation might have played a key role during terrestrialization. Thus, studying Zygnematophyceae and conjugation is crucial for understanding the conquest of land. Moreover, sexual reproduction features are important for species determination. We present a phylogenetic analysis of a field-sampled Zygnema strain and analyze its conjugation process and zygospore morphology, both at the micro- and nanoscale, including 3D-reconstructions of the zygospore architecture. Vegetative filament size (26.18 ± 1.07 µm) and reproductive features allowed morphological determination of Zygnema vaginatum, which was combined with molecular analyses based on rbcL sequencing. Transmission electron microscopy (TEM) depicted a thin cell wall in young zygospores, while mature cells exhibited a tripartite wall, including a massive and sculptured mesospore. During development, cytological reorganizations were visualized by focused ion beam scanning electron microscopy (FIB-SEM). Pyrenoids were reorganized, and the gyroid cubic central thylakoid membranes, as well as the surrounding starch granules, degraded (starch granule volume: 3.58 ± 2.35 µm3 in young cells; 0.68 ± 0.74 µm3 at an intermediate stage of zygospore maturation). Additionally, lipid droplets (LDs) changed drastically in shape and abundance during zygospore maturation (LD/cell volume: 11.77% in young cells; 8.79% in intermediate cells, 19.45% in old cells). In summary, we provide the first TEM images and 3D-reconstructions of Zygnema zygospores, giving insights into the physiological processes involved in their maturation. These observations help to understand mechanisms that facilitated the transition from water to land in Zygnematophyceae.


Assuntos
Carofíceas , Filogenia , Ecossistema , Parede Celular , Amido
4.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955654

RESUMO

Global warming and drought stress are expected to have a negative impact on agricultural productivity. Desiccation-tolerant species, which are able to tolerate the almost complete desiccation of their vegetative tissues, are appropriate models to study extreme drought tolerance and identify novel approaches to improve the resistance of crops to drought stress. In the present study, to better understand what makes resurrection plants extremely tolerant to drought, we performed transmission electron microscopy and integrative large-scale proteomics, including organellar and phosphorylation proteomics, and combined these investigations with previously published transcriptomic and metabolomics data from the resurrection plant Haberlea rhodopensis. The results revealed new evidence about organelle and cell preservation, posttranscriptional and posttranslational regulation, photosynthesis, primary metabolism, autophagy, and cell death in response to desiccation in H. rhodopensis. Different protective intrinsically disordered proteins, such as late embryogenesis abundant (LEA) proteins, thaumatin-like proteins (TLPs), and heat shock proteins (HSPs), were detected. We also found a constitutively abundant dehydrin in H. rhodopensis whose phosphorylation levels increased under stress in the chloroplast fraction. This integrative multi-omics analysis revealed a systemic response to desiccation in H. rhodopensis and certain targets for further genomic and evolutionary studies on DT mechanisms and genetic engineering towards the improvement of drought tolerance in crops.


Assuntos
Craterostigma , Lamiales , Craterostigma/genética , Dessecação , Secas , Proteômica
5.
New Phytol ; 236(3): 943-957, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35872573

RESUMO

Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.


Assuntos
Craterostigma , Proteínas de Plantas , Craterostigma/metabolismo , Dessecação , Mitocôndrias/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
6.
Sci Adv ; 8(6): eabd0892, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138906

RESUMO

The outer layer of the pollen grain, the exine, plays a key role in the survival of terrestrial plant life. However, the exine structure in different groups of plants remains enigmatic. Here, modern and fossil coniferous bisaccate pollen were examined to investigate the detailed three-dimensional structure and properties of the pollen wall. X-ray nanotomography and volume electron microscopy are used to provide high-resolution imagery, revealing a solid nanofoam structure. Atomic force microscopy measurements were used to compare the pollen wall with other natural and synthetic foams and to demonstrate that the mechanical properties of the wall in this type of pollen are retained for millions of years in fossil specimens. The microscopic structure of this robust biological material has potential applications in materials sciences and also contributes to our understanding of the evolutionary success of conifers and other plants over geological time.

7.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685660

RESUMO

Thraustochytrids are marine protists that naturally accumulate triacylglycerol with long chains of polyunsaturated fatty acids, such as ω3-docosahexaenoic acid (DHA). They represent a sustainable response to the increasing demand for these "essential" fatty acids (FAs). Following an attempt to transform a strain of Aurantiochytrium limacinum, we serendipitously isolated a clone that did not incorporate any recombinant DNA but contained two to three times more DHA than the original strain. Metabolic analyses indicated a deficit in FA catabolism. However, whole transcriptome analysis did not show down-regulation of genes involved in FA catabolism. Genome sequencing revealed extensive DNA deletion in one allele encoding a putative peroxisomal adenylate transporter. Phylogenetic analyses and yeast complementation experiments confirmed the gene as a peroxisomal adenylate nucleotide transporter (AlANT1), homologous to yeast ScANT1 and plant peroxisomal adenylate nucleotide carrier AtPNC genes. In yeast and plants, a deletion of the peroxisomal adenylate transporter inhibits FA breakdown and induces FA accumulation, a phenotype similar to that described here. In response to this metabolic event, several compensatory mechanisms were observed. In particular, genes involved in FA biosynthesis were upregulated, also contributing to the high FA accumulation. These results support AlANT1 as a promising target for enhancing DHA production in Thraustochytrids.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Graxos/metabolismo , Mutação/genética , Óleos/metabolismo , Peroxissomos/metabolismo , Estramenópilas/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Genoma , Modelos Biológicos , Filogenia , Estramenópilas/genética , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/ultraestrutura , Transcriptoma/genética
8.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215695

RESUMO

Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.


Assuntos
Metabolismo Energético , Haptófitas/metabolismo , Plâncton/citologia , Simbiose , Ciclo do Carbono , Divisão Celular , Núcleo Celular/metabolismo , Microalgas/citologia , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo
9.
Front Plant Sci ; 12: 628684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113360

RESUMO

Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via ß-oxidation in this oleaginous alga.

10.
New Phytol ; 231(1): 326-338, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764540

RESUMO

Galdieria sulphuraria is a cosmopolitan microalga found in volcanic hot springs and calderas. It grows at low pH in photoautotrophic (use of light as a source of energy) or heterotrophic (respiration as a source of energy) conditions, using an unusually broad range of organic carbon sources. Previous data suggested that G. sulphuraria cannot grow mixotrophically (simultaneously exploiting light and organic carbon as energy sources), its photosynthetic machinery being repressed by organic carbon. Here, we show that G. sulphuraria SAG21.92 thrives in photoautotrophy, heterotrophy and mixotrophy. By comparing growth, biomass production, photosynthetic and respiratory performances in these three trophic modes, we show that addition of organic carbon to cultures (mixotrophy) relieves inorganic carbon limitation of photosynthesis thanks to increased CO2 supply through respiration. This synergistic effect is lost when inorganic carbon limitation is artificially overcome by saturating photosynthesis with added external CO2 . Proteomic and metabolic profiling corroborates this conclusion suggesting that mixotrophy is an opportunistic mechanism to increase intracellular CO2 concentration under physiological conditions, boosting photosynthesis by enhancing the carboxylation activity of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and decreasing photorespiration. We discuss possible implications of these findings for the ecological success of Galdieria in extreme environments and for biotechnological applications.


Assuntos
Extremófilos , Rodófitas , Carbono , Dióxido de Carbono , Processos Heterotróficos , Fotossíntese , Proteômica
11.
Elife ; 102021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33629953

RESUMO

Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling 'Structure Establishment Phase' followed by a 'Chloroplast Proliferation Phase' during cell expansion. Moreover, these data detail thylakoid membrane expansion during de-etiolation at the seedling level and the relative contribution and differential regulation of proteins and lipids at each developmental stage. Altogether, we establish a roadmap for chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.


Assuntos
Arabidopsis/fisiologia , Cloroplastos/fisiologia , Estiolamento , Biogênese de Organelas
12.
Nat Commun ; 12(1): 1049, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594064

RESUMO

Eukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid-mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales.


Assuntos
Metabolismo Energético , Imageamento Tridimensional , Fitoplâncton/citologia , Fitoplâncton/fisiologia , Aclimatação/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Luz , Microalgas/metabolismo , Microalgas/efeitos da radiação , Microalgas/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Fitoplâncton/efeitos da radiação , Fitoplâncton/ultraestrutura , Plastídeos/metabolismo , Frações Subcelulares/metabolismo
13.
BMC Plant Biol ; 19(1): 152, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31010418

RESUMO

BACKGROUND: During sexual reproduction, pollen grains land on the stigma, rehydrate and produce pollen tubes that grow through the female transmitting-tract tissue allowing the delivery of the two sperm cells to the ovule and the production of healthy seeds. Because pollen tubes are single cells that expand by tip-polarized growth, they represent a good model to study the growth dynamics, cell wall deposition and intracellular machineries. Aiming to understand this complex machinery, we used a low throughput chemical screen approach in order to isolate new tip-growth disruptors. The effect of a chemical inhibitor of monogalactosyldiacylglycerol synthases, galvestine-1, was also investigated. The present work further characterizes their effects on the tip-growth and intracellular dynamics of pollen tubes. RESULTS: Two small compounds among 258 were isolated based on their abilities to perturb pollen tube growth. They were found to disrupt in vitro pollen tube growth of tobacco, tomato and Arabidopsis thaliana. We show that these 3 compounds induced abnormal phenotypes (bulging and/or enlarged pollen tubes) and reduced pollen tube length in a dose dependent manner. Pollen germination was significantly reduced after treatment with the two compounds isolated from the screen. They also affected cell wall material deposition in pollen tubes. The compounds decreased anion superoxide accumulation, disorganized actin filaments and RIC4 dynamics suggesting that they may affect vesicular trafficking at the pollen tube tip. CONCLUSION: These molecules may alter directly or indirectly ROP1 activity, a key regulator of pollen tube growth and vesicular trafficking and therefore represent good tools to further study cellular dynamics during polarized-cell growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Germinação/efeitos dos fármacos , Conformação Molecular , Tubo Polínico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Superóxidos/metabolismo
14.
Methods Mol Biol ; 1829: 113-122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29987717

RESUMO

Internal chloroplast structures present complex and various characteristics, which are still largely undetermined due to insufficient imaging investigation. Information on chloroplast morphology has traditionally been collected using light microscopy (LM), confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. However, recent technological progresses in the field of microscopy have made it possible to visualize the internal structure of chloroplast in far greater detail and in 3D. Here we recapitulate protocols to visualize chloroplasts from Arabidopsis leaves and Phaeodactylum tricornutum cells with confocal and transmission electron microscopy together with a new technique using a focused ion beam-scanning electron microscope (FIB-SEM) allowing for 3D imaging.


Assuntos
Plastídeos/metabolismo , Plastídeos/ultraestrutura , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Imageamento Tridimensional , Microscopia Confocal , Microscopia Eletrônica , Imagem Molecular
15.
Dev Biol ; 441(1): 83-94, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920253

RESUMO

FtsZ proteins of the FtsZ1 and FtsZ2 families play important roles in the initiation and progression of plastid division in plants and green algae. Arabidopsis possesses a single FTSZ1 member and two FTSZ2 members, FTSZ2-1 and FTSZ2-2. The contribution of these to chloroplast division and partitioning has been mostly investigated in leaf mesophyll tissues. Here, we assessed the involvement of the three FtsZs in plastid division at earlier stages of chloroplast differentiation. To this end, we studied the effect of the absence of specific FtsZ proteins on plastids in the vegetative shoot apex, where the proplastid-to-chloroplast transition takes place. We found that the relative contribution of the two major leaf FtsZ isoforms, FtsZ1 and FtsZ2-1, to the division process varies with cell lineage and position within the shoot apex. While FtsZ2-1 dominates division in the L1 and L3 layers of the shoot apical meristem (SAM), in the L2 layer, FtsZ1 and FtsZ2-1 contribute equally toward the process. Depletion of the third isoform, FtsZ2-2, generally resulted in stronger effects in the shoot apex than those observed in mature leaves. The implications of these findings, along with additional observations made in this work, to our understanding of the mechanisms and regulation of plastid proliferation in the shoot apex are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Meristema/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Meristema/genética , Folhas de Planta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
16.
Nat Commun ; 8: 15885, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28631733

RESUMO

Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.


Assuntos
Diatomáceas/fisiologia , Fotossíntese/fisiologia , Plastídeos/metabolismo , Tilacoides/metabolismo , Cloroplastos/metabolismo , Diatomáceas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
17.
Plant Physiol ; 173(1): 742-759, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895203

RESUMO

Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Algas/metabolismo , Ácido Eicosapentaenoico/metabolismo , Galactolipídeos/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Estramenópilas/metabolismo , Acetiltransferases/genética , Proteínas de Algas/genética , Clonagem Molecular , Ácido Eicosapentaenoico/genética , Ácidos Graxos Insaturados/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Fotossíntese , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Esfingolipídeos/metabolismo , Estramenópilas/genética , Tilacoides/genética , Tilacoides/ultraestrutura , Triglicerídeos/metabolismo , Leveduras/genética
18.
J Phycol ; 52(5): 689-703, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27470701

RESUMO

Life can thrive in extreme environments where inhospitable conditions prevail. Organisms which resist, for example, acidity, pressure, low or high temperature, have been found in harsh environments. Most of them are bacteria and archaea. The bacterium Deinococcus radiodurans is considered to be a champion among all living organisms, surviving extreme ionizing radiation levels. We have discovered a new extremophile eukaryotic organism that possesses a resistance to ionizing radiations similar to that of D. radiodurans. This microorganism, an autotrophic freshwater green microalga, lives in a peculiar environment, namely the cooling pool of a nuclear reactor containing spent nuclear fuels, where it is continuously submitted to nutritive, metallic, and radiative stress. We investigated its morphology and its ultrastructure by light, fluorescence and electron microscopy as well as its biochemical properties. Its resistance to UV and gamma radiation was assessed. When submitted to different dose rates of the order of some tens of mGy · h-1 to several thousands of Gy · h-1 , the microalga revealed to be able to survive intense gamma-rays irradiation, up to 2,000 times the dose lethal to human. The nuclear genome region spanning the genes for small subunit ribosomal RNA-Internal Transcribed Spacer (ITS) 1-5.8S rRNA-ITS2-28S rRNA (beginning) was sequenced (4,065 bp). The phylogenetic position of the microalga was inferred from the 18S rRNA gene. All the revealed characteristics make the alga a new species of the genus Coccomyxa in the class Trebouxiophyceae, which we name Coccomyxa actinabiotis sp. nov.


Assuntos
Clorófitas/classificação , Microalgas/classificação , Clorófitas/genética , Clorófitas/ultraestrutura , DNA de Algas/genética , DNA Espaçador Ribossômico/genética , Microalgas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reatores Nucleares , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Águas Residuárias
19.
Protist ; 167(3): 254-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27179349

RESUMO

Diatoms contain a secondary plastid that derives from a red algal symbiont. This organelle is limited by four membranes. The two outermost membranes are the chloroplast endoplasmic reticulum membrane (cERM), which is continuous with the host outer nuclear envelope, and the periplastidial membrane (PPM). The two innermost membranes correspond to the outer and inner envelope membranes (oEM and iEM) of the symbiont's chloroplast. Between the PPM and oEM lies a minimized symbiont cytoplasm, the periplastidial compartment (PPC). In Phaeodactylum tricornutum, PPC-resident proteins are localized in "blob-like-structures", which remain associated with plastids after cell disruption. We analyzed disrupted Phaeodactylum cells by focused ion beam scanning electron microscopy, revealing the presence of a vesicular network (VN) in the PPC, at a location consistent with blob-like structures. Presence of a VN in the PPC was confirmed in intact cells. Additionally, direct membrane contacts were observed between the PPM and nuclear inner envelope membrane at the level of the chloroplast-nucleus isthmus. This study provides insights into the PPC ultrastructure and opens perspectives on the function of this residual cytoplasm of red algal origin.


Assuntos
Diatomáceas/ultraestrutura , Citoplasma/ultraestrutura , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Plastídeos/ultraestrutura , Vesículas Transportadoras/ultraestrutura
20.
Curr Biol ; 26(5): 627-39, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898467

RESUMO

The mitochondrion is an organelle originating from an endosymbiotic event and playing a role in several fundamental processes such as energy production, metabolite syntheses, and programmed cell death. This organelle is delineated by two membranes whose synthesis requires an extensive exchange of phospholipids with other cellular organelles such as endoplasmic reticulum (ER) and vacuolar membranes in yeast. These transfers of phospholipids are thought to occur by a non-vesicular pathway at contact sites between two closely apposed membranes. In plants, little is known about the biogenesis of mitochondrial membranes. Contact sites between ER and mitochondria are suspected to play a similar role in phospholipid trafficking as in yeast, but this has never been demonstrated. In contrast, it has been shown that plastids are able to transfer lipids to mitochondria during phosphate starvation. However, the proteins involved in such transfer are still unknown. Here, we identified in Arabidopsis thaliana a large lipid-enriched complex called the mitochondrial transmembrane lipoprotein (MTL) complex. The MTL complex contains proteins located in the two mitochondrial membranes and conserved in all eukaryotic cells, such as the TOM complex and AtMic60, a component of the MICOS complex. We demonstrate that AtMic60 contributes to the export of phosphatidylethanolamine from mitochondria and the import of galactoglycerolipids from plastids during phosphate starvation. Furthermore, AtMic60 promotes lipid desorption from membranes, likely as an initial step for lipid transfer, and binds to Tom40, suggesting that AtMic60 could regulate the tethering between the inner and outer membranes of mitochondria.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transporte Proteico , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA