Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Signal ; 17(824): eadc9662, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377177

RESUMO

The IL-6-gp130-STAT3 signaling axis is a major regulator of inflammation. Activating mutations in the gene encoding gp130 and germline gain-of-function mutations in STAT3 (STAT3GOF) are associated with multi-organ autoimmunity, severe morbidity, and adverse prognosis. To dissect crucial cellular subsets and disease biology involved in activated gp130 signaling, the gp130-JAK-STAT3 axis was constitutively activated using a transgene, L-gp130, specifically targeted to T cells. Activating gp130 signaling in T cells in vivo resulted in fatal, early onset, multi-organ autoimmunity in mice that resembled human STAT3GOF disease. Female mice had more rapid disease progression than male mice. On a cellular level, gp130 signaling induced the activation and effector cell differentiation of T cells, promoted the expansion of T helper type 17 (TH17) cells, and impaired the activity of regulatory T cells. Transcriptomic profiling of CD4+ and CD8+ T cells from these mice revealed commonly dysregulated genes and a gene signature that, when applied to human transcriptomic data, improved the segregation of patients with transcriptionally diverse STAT3GOF mutations from healthy controls. The findings demonstrate that increased gp130-STAT3 signaling leads to TH17-driven autoimmunity that phenotypically resembles human STAT3GOF disease.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Humanos , Masculino , Feminino , Camundongos , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Autoimunidade/genética , Linfócitos T CD8-Positivos/metabolismo , Transdução de Sinais , Inflamação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
J Clin Immunol ; 43(6): 1326-1359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140667

RESUMO

The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.


Assuntos
Mutação com Ganho de Função , Janus Quinases , Humanos , Transdução de Sinais , Citocinas/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
3.
J Allergy Clin Immunol ; 150(5): 1237-1241.e3, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35750105

RESUMO

BACKGROUND: Germline mutations of signal transducer and activator of transcription 3 (STAT3) are responsible for 2 distinct human diseases: autosomal-dominant hyper-IgE syndrome (AD-HIES) caused by STAT3 loss-of-function mutations and STAT3 gain-of-function disease. So far, these entities have been regarded as antithetic, with AD-HIES mainly associated with characteristic infections and a connective tissue phenotype and STAT3 gain-of-function characterized by lymphoproliferation and poly-autoimmunity. The R335W substitution in the DNA-binding domain of STAT3 was initially described in 2 patients with typical AD-HIES, but paradoxically, recent functional analysis demonstrated a gain-of-function effect of this variant. OBJECTIVES: A patient with Sjögren syndrome and features of AD-HIES with this mutation is described and the molecular consequences are further characterized. METHODS: This study provides a clinical and immunological description of the patient. STAT phosphorylation in primary patient cells was studied and A4 cells transfected with the patient allele were used to study phosphorylation kinetics, transcriptional activity, and target-gene induction. RESULTS: The hybrid clinical features of the patient were associated with normal TH17 cells. Enhanced and prolonged STAT3 phosphorylation, an increased STAT3 driven luciferase reporter activity upon IL-6 stimulation, but reduced IL-6-induced SOCS3 production were all observed. CONCLUSIONS: The germline R335W-STAT3 variant displays a mixed behavior in vitro that mainly shows gain-of-function, but also loss-of-function features. This is matched by an ambiguous clinical and immunological phenotype that dismantles the classical antithetic dualism of gain- versus loss-of-function. Germline STAT3 mutation-related disease represents a pathological spectrum with the p.R335W associated phenotype locating between the 2 recognized clinical disease patterns.


Assuntos
Síndrome de Job , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Interleucina-6/genética , Síndrome de Job/genética , Mutação , Fosforilação
4.
Pediatr Pulmonol ; 56(12): 3934-3941, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34549903

RESUMO

Gain-of-function variants in STAT3 are known to cause severe, multifaceted autoimmunity. Here we report three individuals with de-novo STAT3 GOF alleles and early-onset, severe interstitial lung disease manifesting during the first 3 years of life. Imaging and histology revealed different forms of interstitial pneumonia alongside fibrotic and cystic tissue destruction. Definitive diagnosis was established by postmortem whole exome sequencing and functional validation of two new STAT3 variants. Such lung-predominant forms of STAT3 GOF disease expand the phenotypic spectrum of diseases associated with activating STAT3 variants and add to our understanding of this life-threatening inborn error of immunity.


Assuntos
Mutação com Ganho de Função , Doenças Pulmonares Intersticiais , Fator de Transcrição STAT3 , Idade de Início , Autoimunidade , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Fator de Transcrição STAT3/genética , Sequenciamento do Exoma
5.
Biomed J ; 44(4): 412-421, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34366294

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a key transcription factor involved in regulation of immune cell activation and differentiation. Recent discoveries highlight the role of germline activating STAT3 mutations in inborn errors of immunity characterized by early-onset multi-organ autoimmunity and lymphoproliferation. Much progress has been made in defining the clinical spectrum of STAT3 GOF disease and unraveling the molecular and cellular mechanisms underlying this disease. In this review, we summarize our current understanding of the disease and discuss the clinical phenotype, diagnostic approach, cellular and molecular effects of STAT3 GOF mutations and therapeutic concepts for these patients.


Assuntos
Mutação com Ganho de Função , Fator de Transcrição STAT3 , Células Germinativas/metabolismo , Humanos , Mutação/genética , Fenótipo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
6.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872655

RESUMO

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Doenças da Imunodeficiência Primária/imunologia , Viroses/genética , Antígenos de Neoplasias/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/imunologia , Masculino , Doenças da Imunodeficiência Primária/diagnóstico por imagem , Doenças da Imunodeficiência Primária/genética , Viroses/diagnóstico por imagem , Viroses/imunologia
7.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32766723

RESUMO

The Nck-associated protein 1-like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage-specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients' T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.


Assuntos
Síndromes de Imunodeficiência/complicações , Inflamação/complicações , Transtornos Linfoproliferativos/complicações , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Degranulação Celular , Proliferação de Células , Criança , Citotoxicidade Imunológica , Família , Feminino , Homozigoto , Humanos , Síndromes de Imunodeficiência/imunologia , Sinapses Imunológicas/metabolismo , Lactente , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/imunologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação/genética , Linhagem , Fenótipo , Síndrome , Peixe-Zebra
8.
Front Physiol ; 10: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842741

RESUMO

Macrophage-derived cytokines largely influence the behavior of hepatocytes during an inflammatory response. We previously reported that both TNFα and IL-1ß, which are released by macrophages upon LPS stimulation, affect Fas ligand (FasL)-induced apoptotic signaling. Whereas TNFα preincubation leads to elevated levels of caspase-3 activity and cell death, pretreatment with IL-1ß induces increased caspase-3 activity but keeps cells alive. We now report that IL-1ß and TNFα differentially influence NF-κB activity resulting in a differential upregulation of target genes, which may contribute to the distinct effects on cell viability. A reduced NF-κB activation model was established to further investigate the molecular mechanisms which determine the distinct cell fate decisions after IL-1ß and TNFα stimulation. To study this aspect in a more physiological setting, we used supernatants from LPS-stimulated bone marrow-derived macrophages (BMDMs). The treatment of hepatocytes with the BMDM supernatant, which contains both IL-1ß and TNFα, sensitized to FasL-induced caspase-3 activation and cell death. However, when TNFα action was blocked by neutralizing antibodies, cell viability after stimulation with the BMDM supernatant and FasL increased as compared to single FasL stimulation. This indicates the important role of TNFα in the sensitization of apoptosis in hepatocytes. These results give first insights into the complex interplay between macrophages and hepatocytes which may influence life/death decisions of hepatocytes during an inflammatory reaction of the liver in response to a bacterial infection.

9.
Cell Death Dis ; 9(9): 909, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185788

RESUMO

Although it is well established that TNFα contributes to hepatitis, liver failure and associated hepatocarcinogenesis via the regulation of inflammation, its pro-apoptotic role in the liver has remained enigmatic. On its own, TNFα is unable to trigger apoptosis. However, when combined with the transcriptional inhibitor GaLN, it can cause hepatocyte apoptosis and liver failure in mice. Moreover, along with others, we have shown that TNFα is capable of sensitizing cells to FasL- or drug-induced cell death via c-Jun N-terminal kinase (JNK) activation and phosphorylation/activation of the BH3-only protein Bim. In this context, TNFα could exacerbate hepatocyte cell death during simultaneous inflammatory and T-cell-mediated immune responses in the liver. Here we show that TNFα sensitizes primary hepatocytes, established hepatocyte cell lines and mouse embryo fibroblasts to FasL-induced apoptosis by the transcriptional induction and higher surface expression of Fas via the NFκB pathway. Genetic deletion, diminished expression or dominant-negative inhibition of the NFκB subunit p65 resulted in lower Fas expression and inhibited TNFα-induced Fas upregulation and sensitization to FasL-induced cell death. By hydrodynamic injection of p65 shRNA into the tail vein of mice, we confirm that Fas upregulation by TNFα is also NFκB-mediated in the liver. In conclusion, TNFα sensitization of FasL-induced apoptosis in the liver proceeds via two parallel signaling pathways, activation of JNK and Bim phosphorylation and NFκB-mediated Fas upregulation.


Assuntos
Apoptose/fisiologia , Proteína Ligante Fas/metabolismo , Hepatócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/fisiologia , Receptor fas/metabolismo , Células 3T3 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/fisiologia
10.
Virus Res ; 209: 45-55, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-25736565

RESUMO

There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host.


Assuntos
Apoptose , Interações Hospedeiro-Patógeno , Imunidade Inata , Mitocôndrias/metabolismo , Replicação Viral , Vírus/crescimento & desenvolvimento , Vírus/imunologia , Humanos
11.
J Immunol ; 192(3): 1171-83, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24391214

RESUMO

Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2- or Bcl-xL-overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-ß but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose/fisiologia , Caspase 8/fisiologia , Efeito Citopatogênico Viral/fisiologia , Mitocôndrias/fisiologia , Vírus da Floresta de Semliki/fisiologia , Animais , Caspase 3/metabolismo , RNA Helicases DEAD-box/fisiologia , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/fisiologia , Fibroblastos/virologia , Células HEK293/virologia , Células HeLa/virologia , Humanos , Helicase IFIH1 Induzida por Interferon , Camundongos , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Viral/genética , Transdução de Sinais , Replicação Viral , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA