Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Shap Mem Superelasticity ; 9: 50-73, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37261068

RESUMO

Nitinol implants, especially those used in cardiovascular applications, are typically expected to remain durable beyond 108 cycles, yet literature on ultra-high cycle fatigue of nitinol remains relatively scarce and its mechanisms not well understood. To investigate nitinol fatigue behavior in this domain, we conducted a multifaceted evaluation of nitinol wire subjected to rotary bend fatigue that included detailed material characterization and finite element analysis as well as post hoc analyses of the resulting fatigue life data. Below approximately 105 cycles, cyclic phase transformation, as predicted by computational simulations, was associated with fatigue failure. Between 105 and 108 cycles, fractures were relatively infrequent. Beyond 108 cycles, fatigue fractures were relatively common depending on the load level and other factors including the size of non-metallic inclusions present and the number of loading cycles. Given observations of both low cycle and ultra-high cycle fatigue fractures, a two-failure model may be more appropriate than the standard Coffin-Manson equation for characterizing nitinol fatigue life beyond 108 cycles. This work provides the first documented fatigue study of medical grade nitinol to 109 cycles, and the observations and insights described will be of value as design engineers seek to improve durability for future nitinol implants.

2.
Int J Fatigue ; 1552022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36276843

RESUMO

To better understand the complex interplay of speed and environment on metals commonly used in implants, rotary bend fatigue tests were conducted on stainless steel and nitinol wires. A range of alternating strains was tested to create ε-N curves at two speeds (physiologic and accelerated) and in three environments (deionized water at body temperature, phosphate buffered saline at body temperature, and laboratory air at ambient room temperature). Results indicate that speed and environment can affect the observed fatigue life in nuanced ways. An electropotential monitoring technique was demonstrated to characterize fatigue crack growth which may be useful in future investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA