Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Rep ; 14(1): 19117, 2024 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155284

RESUMO

Accurate assessment of vital parameters is essential for diagnosis and triage of critically ill patients, but not always feasible in out-of-hospital settings due to the lack of suitable devices. We performed an extensive validation of a novel prototype in-ear device, which was proposed for the non-invasive, combined measurement of core body temperature (Tc), oxygen saturation (SpO2), and heart rate (HR) in harsh environments. A pilot study with randomized controlled design was conducted in the terraXcube environmental chamber. Participants were subsequently exposed to three 15 min test sessions at the controlled ambient temperatures of 20 °C, 5 °C, and - 10 °C, in randomized order. Vital parameters measured by the prototype were compared with Tc measurements from commercial esophageal (reference) and tympanic (comparator) probes and SpO2 and HR measurements from a finger pulse-oximeter (reference). Performance was assessed in terms of bias and Lin's correlation coefficient (CCC) with respect to the reference measurements and analyzed with linear mixed models. Twenty-three participants (12 men, mean (SD) age, 35 (9) years) completed the experimental protocol. The mean Tc bias of the prototype ranged between - 0.39 and - 0.80 °C at ambient temperatures of 20 °C and 5 °C, and it reached - 1.38 °C only after 15 min of exposure to - 10 °C. CCC values ranged between 0.07 and 0.25. SpO2 and HR monitoring was feasible, although malfunctioning was observed in one third of the tests. SpO2 and HR bias did not show any significant dependence on environmental conditions, with values ranging from - 1.71 to - 0.52% for SpO2 and 1.12 bpm to 5.30 bpm for HR. High CCC values between 0.81 and 0.97 were observed for HR in all environmental conditions. This novel prototype device for measuring vital parameters in cold environments demonstrated reliability of Tc measurements and feasibility of SpO2 and HR monitoring. Through non-invasive and accurate monitoring of vital parameters from the ear canal our prototype may offer support in triage and treatment of critically ill patients in harsh out-of-hospital conditions.


Assuntos
Temperatura Corporal , Frequência Cardíaca , Humanos , Masculino , Feminino , Adulto , Frequência Cardíaca/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Projetos Piloto , Oximetria/instrumentação , Oximetria/métodos , Saturação de Oxigênio/fisiologia , Pessoa de Meia-Idade , Temperatura
2.
Scand J Trauma Resusc Emerg Med ; 32(1): 65, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075543

RESUMO

IMPORTANCE: Emergency medical services (EMS) providers transiently ascend to high altitude for primary missions and secondary transports in mountainous areas in helicopters that are unpressurised and do not have facilities for oxygen supplementation. The decrease in cerebral oxygen saturation can lead to impairment in attention and reaction time as well as in quality of care during acute exposure to altitude. OBJECTIVE: The primary aim of the current study was to investigate the effect of oxygen supplementation on cognitive performance in Helicopter EMS (HEMS) providers during acute exposure to altitude. DESIGN, SETTING, AND PARTICIPANTS: This interventional, randomized, controlled, double-blind, cross-over clinical trial was conducted in October 2021. Each trial used a simulated altitude scenario equivalent to 4000 m, in which volunteers were exposed to hypobaric hypoxia with a constant rate of ascent of 4 m/s in an environmental chamber under controlled, replicable, and safe conditions. Trials could be voluntarily terminated at any time. Inclusion criteria were being members of emergency medical services and search and rescue services with an age between 18 and 60 years and an American Society of Anesthesiologists physical status class I. EXPOSURES: Each participant conducted 2 trials, one in which they were exposed to altitude with oxygen supplementation (intervention trial) and the other in which they were exposed to altitude with ambient air supplementation (control trial). MAIN OUTCOMES AND MEASURES: Measurements included peripheral oxygen saturation (SpO2), cerebral oxygenation (ScO2), breathing and heart rates, Psychomotor Vigilance Test (PVT), Digit-Symbol Substitution Test (DSST), n-Back test (2-BACK), the Grooved Pegboard test, and questionnaires on subjective performance, stress, workload, and positive and negative affect. Paired t-tests were used to compare conditions (intervention vs. control). Data were further analyzed using generalized estimating equations (GEE). RESULTS: A total of 36 volunteers (30 men; mean [SD] age, 36 [9] years; mean [SD] education, 17 [4] years) were exposed to the intervention and control trials. The intervention trials, compared with the control trials, had higher values of SpO2 (mean [SD], 97.9 [1.6] % vs. 86 [2.3] %, t-test, p = 0.004) and ScO2 (mean [SD], 69.9 [5.8] % vs. 62.1 [5.2] %, paired t-test, p = 0.004). The intervention trials compared with the control trials had a shorter reaction time (RT) on the PVT after 5 min (mean [SD], 277.8 [16.7] ms vs. 282.5 [15.3] ms, paired t-test, p = 0.006) and after 30 min (mean [SD], 276.9 [17.7] ms vs. 280.7 [15.0] ms, paired t-test, p = 0.054) at altitude. While controlling for other variables, there was a RT increase of 0.37 ms for each % of SpO2 decrease. The intervention trials showed significantly higher values for DSST number of correct responses (with a difference of mean [SD], 1.2 [3.2], paired t-test, p = 0.035). Variables in the intervention trials were otherwise similar to those in the control trials for DSST number of incorrect responses, 2-BACK, and the Grooved Pegboard test. CONCLUSIONS AND RELEVANCE: This randomized clinical trial found that oxygen supplementation improves cognitive performance among HEMS providers during acute exposure to 4000 m altitude. The use of oxygen supplementation may allow to maintain attention and timely reaction in HEMS providers. The impact of repeated altitude ascents on the same day, sleep-deprivation, and additional stressors should be investigated. Trial registration NCT05073406, ClinicalTrials.gov trial registration.


Assuntos
Altitude , Estudos Cross-Over , Humanos , Masculino , Adulto , Método Duplo-Cego , Feminino , Oxigenoterapia/métodos , Cognição/fisiologia , Oxigênio/sangue , Pessoa de Meia-Idade , Resgate Aéreo , Doença da Altitude/terapia , Serviços Médicos de Emergência
5.
Front Psychiatry ; 14: 1221047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599873

RESUMO

Psychosis is a psychopathological syndrome that can be triggered or caused by exposure to high altitude (HA). Psychosis can occur alone as isolated HA psychosis or can be associated with other mental and often also somatic symptoms as a feature of delirium. Psychosis can also occur as a symptom of high altitude cerebral edema (HACE), a life-threatening condition. It is unclear how psychotic symptoms at HA should be classified into existing diagnostic categories of the most widely used classification systems of mental disorders, including the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and the International Statistical Classification of Diseases and Related Health Problems (ICD-11). We provide a diagnostic framework for classifying symptoms using the existing diagnostic categories: psychotic condition due to a general medical condition, brief psychotic disorder, delirium, and HACE. We also discuss the potential classification of isolated HA psychosis into those categories. A valid and reproducible classification of symptoms is essential for communication among professionals, ensuring that patients receive optimal treatment, planning further trips to HA for individuals who have experienced psychosis at HA, and advancing research in the field.

7.
High Alt Med Biol ; 24(2): 127-131, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262193

RESUMO

van Veelen, Michiel J., Giulia Roveri, Ivo B. Regli, Tomas Dal Cappello, Anna Vögele, Michela Masè, Marika Falla, and Giacomo Strapazzon. Personal protective equipment protocols lead to a delayed initiation of patient assessment in mountain rescue operations. High Alt Med Biol. 24:127-131, 2023. Introduction: Mountain rescue operations can be challenging in austere environmental conditions and remote settings. Airborne infection prevention measures include donning of personal protective equipment (PPE), potentially delaying the approach to a patient. We aimed to investigate the time delay caused by these prevention measures. Methods: This randomized crossover trial consisted of 24 rescue simulation trials intended to be as realistic as possible, performed by mountain rescue teams in difficult terrain. We analyzed the time needed to perform an airborne infection prevention protocol during the approach to a patient. Time delays in scenarios involving patients already wearing versus not wearing face masks and gloves were compared using a linear mixed model Results: The airborne infection prevention measures (i.e., screening questionnaire, hand antisepsis, and donning of PPE) resulted in a time delay of 98 ± 48 (26-214) seconds on initiation of patient assessment. There was a trend to a shorter time to perform infection prevention measures if the simulated patient was already wearing PPE consisting of face mask and gloves (p = 0.052). Conclusion: Airborne infection prevention measures may delay initiation of patient assessment in mountain rescue operations and could impair clinical outcomes in time-sensitive conditions. Trial registration number 0105095-BZ Ethics Committee review board of Bolzano.


Assuntos
Pessoal de Saúde , Trabalho de Resgate , Humanos , Estudos Cross-Over , Máscaras , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Fatores de Tempo
8.
JAMA Netw Open ; 6(5): e2313376, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184835

RESUMO

Importance: Approximately 70% of individuals critically buried in avalanche debris die within 35 minutes as a result of asphyxial cardiac arrest. An artificial air-pocket device (AAPD) that separates inhaled air from exhaled air may delay the onset of severe hypoxemia and eventual asphyxia during snow burial. Objective: To investigate the efficacy of a new AAPD during snow burial in a supine position. Design, Setting, and Participants: This comparative effectiveness trial was performed in winter 2016 with data analysis in November 2016 and November 2022. Each trial used a simulated critical avalanche burial scenario, in which a trough was dug in a snow pile and an additional air pocket of 0.5 L volume was punched into the lateral wall for each control trial. All participants were buried in a supine position. Trials could be voluntarily terminated at any time, with a maximum length of 60 minutes; trials were automatically terminated if the participant's peripheral oxygen saturation (Spo2) dropped to less than 84%. Exposures: Each participant conducted 2 trials, one in which they breathed into the AAPD (intervention trial) and the other in which they breathed into the prepared air pocket (control trial). Main Outcomes and Measures: Measurements included Spo2, cerebral oxygenation, ventilatory parameters, respiratory gas concentrations, and visual-analogue scales. Kaplan-Meier survival curves and rank test for matched survival data were used to analyze the total burial time in each trial. Results: A total of 13 volunteers (9 men; mean [SD] age, 33 [8] years) were exposed to the intervention and control trials. Intervention trials were terminated less often (2 of 13 trials) as a result of hypoxemia than control trials (11 of 12 trials). Similarly, survival curves showed a longer duration of burial in the intervention compared with the control trials for the time to reach an Spo2 less than 84% (rank test for matched survival data: P = .003). The intervention trials, compared with the control trials, also had slower rates of decrease in fraction of inspired oxygen (mean [SD] rate, -0.8 [0.4] %/min vs -2.2 [1.2] %/min) and of increase in fraction of inspired carbon dioxide (mean [SD] rate, 0.5 [0.3] %/min vs 1.4 [0.6] %/min) and expired ventilation per minute (mean [SD] rate, 0.5 [1.0] L/min2 vs 3.9 [2.6] L/min2). Conclusions and Relevance: This comparative effectiveness trial found that the new AAPD was associated with delaying the development of hypoxemia and hypercapnia in supine participants in a critical burial scenario. Use of the AAPD may allow a longer burial time before asphyxial cardiac arrest, which might allow longer times for successful rescue by companions or by prehospital emergency medical services.


Assuntos
Avalanche , Desastres , Parada Cardíaca , Adulto , Humanos , Masculino , Asfixia , Hipóxia/etiologia , Hipóxia/terapia , Pesquisa Comparativa da Efetividade
9.
J Travel Med ; 30(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881665

RESUMO

BACKGROUND: During the COVID-19 pandemic, the use of face masks has been recommended or enforced in several situations; however, their effects on physiological parameters and cognitive performance at high altitude are unknown. METHODS: Eight healthy participants (four females) rested and exercised (cycling, 1 W/kg) while wearing no mask, a surgical mask or a filtering facepiece class 2 respirator (FFP2), both in normoxia and hypobaric hypoxia corresponding to an altitude of 3000 m. Arterialised oxygen saturation (SaO2), partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2), heart and respiratory rate, pulse oximetry (SpO2), cerebral oxygenation, visual analogue scales for dyspnoea and mask's discomfort were systematically investigated. Resting cognitive performance and exercising tympanic temperature were also assessed. RESULTS: Mask use had a significant effect on PaCO2 (overall +1.2 ± 1.7 mmHg). There was no effect of mask use on all other investigated parameters except for dyspnoea and discomfort, which were highest with FFP2. Both masks were associated with a similar non-significant decrease in SaO2 during exercise in normoxia (-0.5 ± 0.4%) and, especially, in hypobaric hypoxia (-1.8 ± 1.5%), with similar trends for PaO2 and SpO2. CONCLUSIONS: Although mask use was associated with higher rates of dyspnoea, it had no clinically relevant impact on gas exchange at 3000 m at rest and during moderate exercise, and no detectable effect on resting cognitive performance. Wearing a surgical mask or an FFP2 can be considered safe for healthy people living, working or spending their leisure time in mountains, high-altitude cities or other hypobaric environments (e.g. aircrafts) up to an altitude of 3000 m.


Assuntos
Altitude , COVID-19 , Feminino , Humanos , Máscaras , COVID-19/epidemiologia , Pandemias , Oxigênio , Hipóxia , Dispneia
10.
Am J Emerg Med ; 66: 40-44, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680868

RESUMO

INTRODUCTION: Response to medical incidents in mountainous areas is delayed due to the remote and challenging terrain. Drones could assist in a quicker search for patients and can facilitate earlier treatment through delivery of medical equipment. We aim to assess the effects of using drones in search and rescue (SAR) operations in challenging terrain. We hypothesize that drones can reduce the search time and treatment-free interval of patients by delivering an emergency kit and telemedical support. METHODS: In this randomized controlled trial with a cross-over design two methods of searching for and initiating treatment of a patient were compared. The primary outcome was a comparison of the times for locating a patient through visual contact and starting treatment on-site between the drone-assisted intervention arm and the conventional ground-rescue control arm. A linear mixed model (LMM) was used to evaluate the effect of using a drone on search and start of treatment times. RESULTS: Twenty-four SAR missions, performed by six SAR teams each with four team members, were analyzed. The mean time to locate the patient was 14.6 min (95% CI 11.3-17.9) in the drone-assisted intervention arm and 20.6 min (95% CI 17.3-23.9) in the control arm. The mean time to start treatment was 15.7 min (95% CI 12.4-19.0) in the drone-assisted arm and 22.4 min (95% CI 19.1-25.7) in the control arm (p < 0.01 for both comparisons). CONCLUSION: The successful use of drones in SAR operations leads to a reduction in search time and treatment-free interval of patients in challenging terrain, which could improve outcomes in patients suffering from traumatic injuries, the most commonly occurring incident requiring mountain rescue operations.


Assuntos
Serviços Médicos de Emergência , Telemedicina , Humanos , Dispositivos Aéreos não Tripulados , Aeronaves , Trabalho de Resgate/métodos , Serviços Médicos de Emergência/métodos
11.
Ann Emerg Med ; 81(6): 699-705, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669910

RESUMO

STUDY OBJECTIVE: We analyzed occupational accidents reported among Corpo Nazionale Soccorso Alpino e Speleologico (CNSAS) providers during mountain search and rescue operations and training events in Italy (1999 to 2019). METHODS: We extracted anonymized data from the CNSAS accident database for all cases of injured mountain search and rescue providers that activated CNSAS insurance (1999 to 2019). We report epidemiological characteristics, mechanisms, type, and severity of injury or illness, clinical outcome, and recovery time. RESULTS: A total of 784 cases of injuries in CNSAS mountain search and rescue providers were recorded. Forty-one percent of the cases occurred during rescue operations and 59% during training events. Overall, trauma was the main cause of injury (96%), whereas only 4% of the cases were classified as medical or environmental illnesses. Moderate injury (National Advisory Committee for Aeronautics II to III) occurred in 80% of the reported accidents. Recovery time differed based on the degree of accident severity. Fatalities occurred in 2% of the cases reported and occurred during rescue operations only. CONCLUSION: In this long-term retrospective analysis, we showed that accidents occurred among mountain search and rescue providers both during rescue operations and training events. Given the high prevalence and associated costs, it is of pivotal importance to understand the epidemiology and characteristics of occupational injury and illness among this out-of-hospital workforce to better inform future prevention strategies.


Assuntos
Trabalho de Resgate , Ferimentos e Lesões , Humanos , Acidentes de Trabalho , Estudos Retrospectivos , Acidentes , Bases de Dados Factuais , Itália
13.
Hum Factors ; : 187208221086407, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35640630

RESUMO

OBJECTIVE: To evaluate, under replicable, blinded and standardised conditions, the effect of acute exposure to hypobaric hypoxia (HH) (equivalent to 200 or 3000 or 5000 m above sea level (asl)) on selected cognitive domains and physiological parameters in personnel of helicopter emergency medical service (HEMS). METHODS: We conducted a randomized clinical trial using a single-blind crossover design in an environmental chamber (terraXcube) to induce HH in 48 HEMS personnel. Participants performed cognitive tests (CT) before the ascent, after 5 min at altitude, and after simulated cardiopulmonary resuscitation (SCR). CT evaluated: sustained attention using the psychomotor vigilance test (PVT) that included measurement of reaction time (RT); risky decision making using the balloon analogue risk task (BART), and attention and speed of processing using the digit symbol substitution test (DSST). CT performance was subjectively rated with a visual analogue scale (VAS). Physiological data were recorded with a physiological monitoring system. Data were analysed using a linear mixed model and correlation analysis. RESULTS: Mean reaction time was significantly slower (p = 0.002) at HH (5000 m asl), but there were no independent effects of HH on the other parameters of the PVT, BART or DSST. Participants did not detect subjectively the slower RT at altitude since VAS performance results showed a positive correlation with mean RT (p = 0.009). DSST results significantly improved (p = 0.001) after SCR. CONCLUSION: Acute exposure of HEMS personnel to HH induced a slower RT but no changes in any other investigated measures of cognition. The reduced RT was not detected subjectively by the participants. Trial number 3489044136, ClinicalTrials.gov trial registration.

14.
Front Physiol ; 13: 830059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309078

RESUMO

Background: Indirect core body temperature (CBT) monitoring from skin sensors is gaining attention for in-field applications thanks to non-invasivity, portability, and easy probe positioning. Among skin sensors, heat-flux devices, such as the so-called Double Sensor (DS), have demonstrated reliability under various experimental and clinical conditions. Still, their accuracy at low ambient temperatures is unknown. In this randomized cross-over trial, we tested the effects of cold temperature exposition on DS performance in tracking CBT. Methods: Twenty-one participants were exposed to a warm (23.2 ± 0.4°C) and cold (-18.7 ± 1.0°C) room condition for 10 min, following a randomized cross-over design. The accuracy of the DS to estimate CBT in both settings was assessed by quantitative comparison with esophageal (reference) and tympanic (comparator) thermometers, using Bland-Altman and correlation analyses (Pearson's correlation coefficient, r, and Lin's concordance correlation coefficient, CCC). Results: In the warm room setting, the DS showed a moderate agreement with the esophageal sensor [bias = 0.09 (-1.51; 1.69) °C, r = 0.40 (p = 0.069), CCC = 0.22 (-0.006; 0.43)] and tympanic sensor [bias = 2.74 (1.13; 4.35) °C, r = 0.54 (p < 0.05), CCC = 0.09 (0.008; 0.16)]. DS accuracy significantly deteriorated in the cold room setting, where DS temperature overestimated esophageal temperature [bias = 2.16 (-0.89; 5.22) °C, r = 0.02 (0.94), CCC = 0.002 (-0.05; 0.06)]. Previous exposition to the cold influenced temperature values measured by the DS in the warm room setting, where significant differences (p < 0.00001) in DS temperature were observed between randomization groups. Conclusion: DS accuracy is influenced by environmental conditions and previous exposure to cold settings. These results suggest the present inadequacy of the DS device for in-field applications in low-temperature environments and advocate further technological advancements and proper sensor insulation to improve performance in these conditions.

15.
Neurol Sci ; 43(3): 1627-1639, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35028778

RESUMO

BACKGROUND: Freezing of gait (FOG) is a disabling motor symptom occurring mainly in the advanced stage of Parkinson's disease (PD). METHODS: This review outlines the clinical manifestation of FOG and its relationship with levodopa treatment, the differential diagnosis with respect to other neurodegenerative and secondary forms and the available treatment. RESULTS: We report the proposed models explaining the FOG phenomenon and summarize the available knowledge on FOG etiology's potential genetic contribution. A complete understanding of the mechanisms underlying FOG in PD is essential to find the best therapy. Different treatment options exist but are still not entirely successful, and often a combination of approaches is needed. CONCLUSIONS: Further studies focusing on the potential genetic role in FOG may increase the knowledge on the FOG etiology and pathophysiology, allowing further individualized treatment strategies for this very disabling phenomenon.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Causalidade , Marcha , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/terapia , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética
16.
J Cent Nerv Syst Dis ; 13: 11795735211053448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955663

RESUMO

BACKGROUND: Several neurological conditions might worsen with the exposure to high altitude (HA). The aim of this review was to summarize the available knowledge on the neurological HA illnesses and the risk for people with neurological disorders to attend HA locations. METHODS: A search of literature was conducted for several neurological disorders in PubMed and other databases since 1970. The neurological conditions searched were migraine, different cerebrovascular disease, intracranial space occupying mass, multiple sclerosis, peripheral neuropathies, neuromuscular disorders, epileptic seizures, delirium, dementia, and Parkinson's disease (PD). RESULTS: Attempts were made to classify the risk posed by each condition and to provide recommendations regarding medical evaluation and advice for or against traveling to altitude. Individual cases should be advised after careful examination and risk evaluation performed either in an outpatient mountain medicine service or by a physician with knowledge of HA risks. Preliminary diagnostic methods and anticipation of neurological complications are needed. CONCLUSIONS: Our recommendations suggest absolute contraindications to HA exposure for the following neurological conditions: (1) Unstable conditions-such as recent strokes, (2) Diabetic neuropathy, (3) Transient ischemic attack in the last month, (4) Brain tumors, and 5. Neuromuscular disorders with a decrease of forced vital capacity >60%. We consider the following relative contraindications where decision has to be made case by case: (1) Epilepsy based on recurrence of seizure and stabilization with the therapy, (2) PD (± obstructive sleep apnea syndrome-OSAS), (3) Mild Cognitive Impairment (± OSAS), and (4) Patent foramen ovale and migraine have to be considered risk factors for acute mountain sickness.

17.
J Am Heart Assoc ; 10(23): e021090, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34854317

RESUMO

Background Helicopter emergency medical services personnel operating in mountainous terrain are frequently exposed to rapid ascents and provide cardiopulmonary resuscitation (CPR) in the field. The aim of the present trial was to investigate the quality of chest compression only (CCO)-CPR after acute exposure to altitude under repeatable and standardized conditions. Methods and Results Forty-eight helicopter emergency medical services personnel were divided into 12 groups of 4 participants; each group was assigned to perform 5 minutes of CCO-CPR on manikins at 2 of 3 altitudes in a randomized controlled single-blind crossover design (200, 3000, and 5000 m) in a hypobaric chamber. Physiological parameters were continuously monitored; participants rated their performance and effort on visual analog scales. Generalized estimating equations were performed for variables of CPR quality (depth, rate, recoil, and effective chest compressions) and effects of time, altitude, carryover, altitude sequence, sex, qualification, weight, preacclimatization, and interactions were analyzed. Our trial showed a time-dependent decrease in chest compression depth (P=0.036) after 20 minutes at altitude; chest compression depth was below the recommended minimum of 50 mm after 60 to 90 seconds (49 [95% CI, 46-52] mm) of CCO-CPR. Conclusions This trial showed a time-dependent decrease in CCO-CPR quality provided by helicopter emergency medical services personnel during acute exposure to altitude, which was not perceived by the providers. Our findings suggest a reevaluation of the CPR guidelines for providers practicing at altitudes of 3000 m and higher. Mechanical CPR devices could be of help in overcoming CCO-CPR quality decrease in helicopter emergency medical services missions. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04138446.


Assuntos
Aeronaves , Altitude , Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Qualidade da Assistência à Saúde , Reanimação Cardiopulmonar/métodos , Reanimação Cardiopulmonar/normas , Estudos Cross-Over , Serviços Médicos de Emergência/normas , Humanos , Método Simples-Cego
18.
Foods ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829027

RESUMO

The aim of the present scoping review was to evaluate the impact of experimental meal loads or observational diet changes/habits on taste tests in both healthy subjects and patients. A systematic search performed in PubMed, Scopus, and Institute for Scientific Information (ISI) Web of Science electronic databases retrieved, respectively 2981, 6258, and 7555 articles from January 2000 to December 2020. A total of 17 articles were included for full-text review. Literature results were stratified according to the observational/interventional approach, the involvement of healthy subjects or patients, the taste test, and the meal/dietary changes. The present scoping review reinforced the notions postulating that certain taste tests (for example focusing on fatty acid, salt, or sugar) might be specifically influenced by the nutritional intervention and that other ones might be susceptible to a wide span of changes beyond the extent of tastant included in the specific food changes. This could also depend on the inhomogeneity of literature trend: The short duration of the intervention or the random type of meal load, unsuitability of the taste test chosen, and the presence of underlying disorders. Future studies for a better comprehension of taste tests reliability in relation to specific food changes are thus to be fostered.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34574580

RESUMO

Frostbite is tissue damage caused by freezing temperatures and constitutes an important cause of morbidity in cold climate zones and high altitude. The direct effects of sub-zero temperatures lead to tissue freezing, electrolyte shifts and pH alterations, microvascular damage, and eventually to cell death. Upon rewarming, inflammatory reperfusion injury and thrombosis may lead to further tissue damage. Several studies and various case reports show that many patients suffer from long-term sequelae such as vasomotor disturbances (associated with susceptibility to refreezing), and neuropathic and nociceptive pain, as well as damage to skeletal structures. There are still many uncertainties regarding the pathophysiology of these sequelae. It has been shown that the transient receptor potential channel (TRP) family plays a role in cold allodynia. Botulinum Toxin type A (BTX-A) injections have been reported to be beneficial in vasomotor and neuropathic disturbances secondary to frostbite. Epidural sympathetic block has been used for short-term treatment of frostbite induced chronic pain. Furthermore, amitriptyline, gabapentinoids, and duloxetine may have some benefits. Frostbite arthritis clinically resembles regular osteoarthritis. In children there is a risk of epiphyseal cartilage damage leading to bone deformities. Despite some promising therapeutic concepts, the scarcity of data on frostbite long-term sequelae in the literature indicates the need of more in-depth studies of this pathology in all its aspects.


Assuntos
Congelamento das Extremidades , Temperatura Baixa , Congelamento , Congelamento das Extremidades/tratamento farmacológico , Congelamento das Extremidades/etiologia , Humanos , Reaquecimento
20.
Artigo em Inglês | MEDLINE | ID: mdl-34574649

RESUMO

Several aspects of cognition can be affected after cold exposure, but contradictory results have been reported regarding affected cognitive domains. The aim of the current systematic review was to evaluate the effects of specific cold exposure on cognitive performance in healthy subjects. A systematic search was performed using MEDLINE (through PubMed), EMBASE (Scopus) and PsycINFO databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria were healthy subjects exposed to a cold environment (either simulated or not) and cognitive performance related to cold exposure with an experimental design. The literature search identified 18 studies, eight studies investigated the effect of cold air exposure and ten the effect of cold water immersion on cognitive performance of healthy subjects. There were several differences among the studies (environmental temperature reached, time of exposure, timing, and type of cognitive test administration). Cold exposure induced in most of the experimental settings (15 of 18) an impairment of CP even before accidental hypothermia was established. The most investigated and affected cognitive domains were attention and processing speed, executive function, and memory. Gender differences and effects of repeated exposure and possible acclimation on cognitive performance need further studies to be confirmed.


Assuntos
Cognição , Disfunção Cognitiva , Aclimatação , Adulto , Atenção , Função Executiva , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA