Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Nat Commun ; 15(1): 3389, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649353

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by anti-nuclear autoantibodies whose production is promoted by autoreactive T follicular helper (TFH) cells. During SLE pathogenesis, basophils accumulate in secondary lymphoid organs (SLO), amplify autoantibody production and disease progression through mechanisms that remain to be defined. Here, we provide evidence for a direct functional relationship between TFH cells and basophils during lupus pathogenesis, both in humans and mice. PD-L1 upregulation on basophils and IL-4 production are associated with TFH and TFH2 cell expansions and with disease activity. Pathogenic TFH cell accumulation, maintenance, and function in SLO were dependent on PD-L1 and IL-4 in basophils, which induced a transcriptional program allowing TFH2 cell differentiation and function. Our study establishes a direct mechanistic link between basophils and TFH cells in SLE that promotes autoantibody production and lupus nephritis.


Assuntos
Antígeno B7-H1 , Basófilos , Interleucina-4 , Lúpus Eritematoso Sistêmico , Células T Auxiliares Foliculares , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Autoanticorpos/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Basófilos/imunologia , Basófilos/metabolismo , Diferenciação Celular/imunologia , Interleucina-4/metabolismo , Interleucina-4/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Nefrite Lúpica/metabolismo , Camundongos Endogâmicos C57BL , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
2.
J Immunol ; 212(1): 13-23, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991425

RESUMO

4-Octyl itaconate (4-OI) is a derivative of the Krebs cycle-derived metabolite itaconate and displays an array of antimicrobial and anti-inflammatory properties through modifying cysteine residues within protein targets. We have found that 4-OI significantly reduces the production of eosinophil-targeted chemokines in a variety of cell types, including M1 and M2 macrophages, Th2 cells, and A549 respiratory epithelial cells. Notably, the suppression of these chemokines in M1 macrophages was found to be NRF2-dependent. In addition, 4-OI can interfere with IL-5 signaling and directly affect eosinophil differentiation. In a model of eosinophilic airway inflammation in BALB/c mice, 4-OI alleviated airway resistance and reduced eosinophil recruitment to the lungs. Our findings suggest that itaconate derivatives could be promising therapeutic agents for the treatment of eosinophilic asthma.


Assuntos
Eosinófilos , Eosinofilia Pulmonar , Camundongos , Animais , Eosinofilia Pulmonar/tratamento farmacológico , Quimiocinas , Inflamação/tratamento farmacológico
4.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316487

RESUMO

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Assuntos
COVID-19 , Interferon Tipo I , Trombose , Humanos , Anticoagulantes , Tromboplastina , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Escherichia coli , Inflamação , Lipopolissacarídeos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspases
5.
J Immunol ; 211(4): 626-632, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37387671

RESUMO

The transcription factor retinoic acid-related orphan receptor α (RORα) is important in regulating several physiological functions, such as cellular development, circadian rhythm, metabolism, and immunity. In two in vivo animal models of type 2 lung inflammation, Nippostrongylus brasiliensis infection and house dust mite (HDM) sensitization, we show a role for Rora in Th2 cellular development during pulmonary inflammation. N. brasiliensis infection and HDM challenge induced an increase in frequency of Rora-expressing GATA3+CD4 T cells in the lung. Using staggerer mice, which have a ubiquitous deletion of functional RORα, we generated bone marrow chimera mice, and we observed a delayed worm expulsion and reduced frequency in the expansion of Th2 cells and innate lymphoid type 2 cells (ILC2s) in the lungs after N. brasiliensis infection. ILC2-deficient mouse (Rorafl/flIl7raCre) also had delayed worm expulsion with associated reduced frequency of Th2 cells and ILC2s in the lungs after N. brasiliensis infection. To further define the role for Rora-expressing Th2 cells, we used a CD4-specific Rora-deficient mouse (Rorafl/flCD4Cre), with significantly reduced frequency of lung Th2 cells, but not ILC2, after N. brasiliensis infection and HDM challenge. Interestingly, despite the reduction in pulmonary Th2 cells in Rorafl/flCD4Cre mice, this did not impact the expulsion of N. brasiliensis after primary and secondary infection, or the generation of lung inflammation after HDM challenge. This study demonstrates a role for RORα in Th2 cellular development during pulmonary inflammation that could be relevant to the range of inflammatory diseases in which RORα is implicated.


Assuntos
Imunidade Inata , Pneumonia , Camundongos , Animais , Células Th2 , Receptor alfa de Ácido Retinoico , Linfócitos T CD4-Positivos , Tretinoína
6.
Front Immunol ; 14: 1170012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063871

RESUMO

Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1ß, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1ß, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.


Assuntos
COVID-19 , Humanos , Feminino , Idoso , Masculino , Citocinas , Interleucina-10 , Interleucina-33 , SARS-CoV-2 , Interleucina-6 , Fator de Necrose Tumoral alfa , Pandemias , Quimiocina CXCL10 , Interleucina-2 , Fator Estimulador de Colônias de Granulócitos
7.
Cancer Cell ; 41(3): 620-636.e9, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917954

RESUMO

The cellular and molecular mechanisms underlying tumor cell PD-L1 (tPD-L1) function in tumor immune evasion are incompletely understood. We report here that tPD-L1 does not suppress cytotoxic T lymphocyte (CTL) activity in co-cultures of tumor cells and tumor-specific CTLs and exhibits no effect on primary tumor growth. However, deleting tPD-L1 decreases lung metastasis in a CTL-dependent manner in tumor-bearing mice. Depletion of myeloid cells or knocking out PD-1 in myeloid cells (mPD-1) impairs tPD-L1 promotion of tumor lung metastasis in mice. Single-cell RNA sequencing (scRNA-seq) reveals that tPD-L1 engages mPD-1 to activate SHP2 to antagonize the type I interferon (IFN-I) and STAT1 pathway to repress Cxcl9 and impair CTL recruitment to lung metastases. Human cancer patient response to PD-1 blockade immunotherapy correlates with IFN-I response in myeloid cells. Our findings determine that tPD-L1 engages mPD-1 to activate SHP2 to suppress the IFN-I-STAT1-CXCL9 pathway to impair CTL tumor recruitment in lung metastasis.


Assuntos
Interferon Tipo I , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Linfócitos T Citotóxicos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética
8.
J Thromb Haemost ; 21(5): 1123-1134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775768

RESUMO

BACKGROUND: Previous studies have reported marked interindividual variation in factor VIII (FVIII) clearance in patients with hemophilia (PWH) and proposed a number of factors that influence this heterogeneity. OBJECTIVES: To investigate the importance of the clearance rates of endogenous von Willebrand factor (VWF) compared with those of other FVIII half-life modifiers in adult PWH. METHODS: The half-life of recombinant FVIII was determined in a cohort of 61 adult PWH. A range of reported modifiers of FVIII clearance was assessed (including plasma VWF:antigen and VWF propeptide levels; VWF-FVIII binding capacity; ABO blood group; and nonneutralizing anti-FVIII antibodies). The FVIII-binding region of the VWF gene was sequenced. Finally, the effects of variation in FVIII half-life on clinical phenotype were investigated. RESULTS: We demonstrated that heterogeneity in the clearance of endogenous plasma VWF is a key determinant of variable FVIII half-life in PWH. Both ABO blood group and age significantly impact FVIII clearance. The effect of ABO blood group on FVIII half-life in PWH is modulated entirely through its effect on the clearance rates of endogenous VWF. In contrast, the age-related effect on FVIII clearance is, at least in part, VWF independent. In contrast to previous studies, no major effects of variation in VWF-FVIII binding affinity on FVIII clearance were observed. Although high-titer immunoglobulin G antibodies (≥1:80) were observed in 26% of PWH, these did not impact FVIII half-life. Importantly, the annual FVIII usage (IU/kg/y) was significantly (p = .0035) increased in patients with an FVIII half-life of <12 hours. CONCLUSION: Our data demonstrate that heterogeneity in the half-life of FVIII concentrates in patients with hemophilia A is primarily attributable to variability in the clearance of endogenous VWF.


Assuntos
Hemofilia A , Hemostáticos , Doenças de von Willebrand , Humanos , Fator VIII/uso terapêutico , Fator VIII/metabolismo , Fator de von Willebrand/metabolismo , Hemofilia A/diagnóstico , Hemofilia A/tratamento farmacológico , Meia-Vida , Sistema ABO de Grupos Sanguíneos
9.
Arterioscler Thromb Vasc Biol ; 43(4): 540-546, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727518

RESUMO

BACKGROUND: Although most plasma FVIII (Factor VIII) circulates in complex with VWF (von Willebrand factor), a minority (3%-5%) circulates as free-FVIII, which is rapidly cleared. Consequently, 20% of total FVIII may be cleared as free-FVIII. Critically, the mechanisms of free-FVIII clearance remain poorly understood. However, recent studies have implicated the MGL (macrophage galactose lectin) in modulating VWF clearance. METHODS: Since VWF and FVIII share similar glycosylation, we investigated the role of MGL in FVIII clearance. FVIII binding to MGL was assessed in immunosorbent and cell-based assays. In vivo, FVIII clearance was assessed in MGL1-/- and VWF-/-/FVIII-/- mice. RESULTS: In vitro-binding studies identified MGL as a novel macrophage receptor that binds free-FVIII in a glycan-dependent manner. MGL1-/- and MGL1-/- mice who received an anti-MGL1/2 blocking antibody both showed significantly increased endogenous FVIII activity compared with wild-type mice (P=0.036 and P<0.0001, respectively). MGL inhibition also prolonged the half-life of infused FVIII in FVIII-/- mice. To assess whether MGL plays a role in the clearance of free FVIII in a VWF-independent manner, in vivo clearance experiments were repeated in dual VWF-/-/FVIII-/- mice. Importantly, the rapid clearance of free FVIII in VWF-/-/FVIII-/- mice was significantly (P=0.012) prolonged in the presence of anti-MGL1/2 antibodies. Finally, endogenous plasma FVIII levels in VWF-/- mice were significantly increased following MGL inhibition (P=0.016). CONCLUSIONS: Cumulatively, these findings demonstrate that MGL plays an important role in regulating macrophage-mediated clearance of both VWF-bound FVIII and free-FVIII in vivo. We propose that this novel FVIII clearance pathway may be of particular clinical importance in patients with type 2N or type 3 Von Willebrand disease.


Assuntos
Hemostáticos , Doenças de von Willebrand , Camundongos , Animais , Fator VIII/genética , Fator VIII/metabolismo , Fator de von Willebrand/metabolismo , Galactose/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismo
10.
Front Immunol ; 14: 1335326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283350

RESUMO

Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.


Assuntos
Imunidade Inata , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Interleucina-33/metabolismo , Linfócitos , Pulmão , Neoplasias da Bexiga Urinária/patologia , Microambiente Tumoral
11.
Antib Ther ; 5(4): 258-267, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36299415

RESUMO

Background: Interleukin (IL)25 has been implicated in tissue homeostasis at barrier surfaces and the initiation of type two inflammatory signaling in response to infection and cell injury across multiple organs. We sought to discover and engineer a high affinity neutralizing antibody and evaluate the antibody functional activity in vitro and in vivo. Methods: In this study, we generated a novel anti-IL25 antibody (22C7) and investigated the antibody's therapeutic potential for targeting IL25 in inflammation. Results: A novel anti-IL25 antibody (22C7) was generated with equivalent in vitro affinity and potency against the human and mouse orthologs of the cytokine. This translated into in vivo potency in an IL25-induced air pouch model where 22C7 inhibited the recruitment of monocytes, macrophages, neutrophils and eosinophils. Furthermore, 22C7 significantly reduced ear swelling, acanthosis and disease severity in the Aldara mouse model of psoriasiform skin inflammation. Given the therapeutic potential of IL25 targeting in inflammatory conditions, 22C7 was further engineered to generate a highly developable, fully human antibody while maintaining the affinity and potency of the parental molecule. Conclusions: The generation of 22C7, an anti-IL25 antibody with efficacy in a preclinical model of skin inflammation, raises the therapeutic potential for 22C7 use in the spectrum of IL25-mediated diseases.

12.
Front Immunol ; 13: 932893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844529

RESUMO

Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.


Assuntos
Tecido Adiposo , Obesidade , Adipocinas/metabolismo , Humanos , Imunidade , Inflamação
13.
Sci Immunol ; 7(73): eabn3240, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857578

RESUMO

Gammaherpesviruses (γHVs) have coevolved with their host, leading to a remarkably high infection prevalence and establishment of latency. The lifelong persistence of γHVs in hosts appears to broadly shape host immunity, and we show here that pulmonary infection with Murid herpesvirus 4 (MuHV-4), a mouse γHV, drives the recruitment of Ly6Chi monocytes (MOs) into the airway, thereby modulating the host immune response. The absence of Ly6Chi MOs is associated with severe virus-induced immunopathology and the systemic release of inflammatory mediators. Mechanistically, MuHV-4-imprinted MOs recruit CD4 T cells to the airways and trigger immunosuppressive signaling pathways through the PD-L1/PD-1 axis, thereby dampening the deleterious activation of cytotoxic CD4 T cells. These results uncover a role for Ly6Chi MOs in modulating CD4 T cell functions and reveal pathways that could be targeted therapeutically to reduce detrimental immunopathological responses associated with respiratory viral infections.


Assuntos
Linfócitos T CD4-Positivos , Monócitos , Animais , Camundongos , Linfócitos T Citotóxicos
14.
Cytokine ; 154: 155890, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462264

RESUMO

The interleukin-1 (IL-1) family of cytokines and receptors are implicated in the functioning of innate and adaptive immunity and the genesis of inflammation. They are widely expressed in structural and immune cells with marked expression within barrier mucosal surfaces. In the lung, gut and skin, which are common entry sites for pathogens, they play essential functions in maintaining the functional integrity of the barrier and manage innate and adaptive immunity in response to insult and infections. In tissue sites, the IL-1 cytokines are tightly regulated by mechanisms involving decoy receptors and protease degradation. Dysregulation of these processes are associated with aberrant tissue inflammation leading to a number of inflammatory diseases. This review will address the roles of the different IL-1 cytokines at the lung, gut and skin barrier surfaces at homeostasis, and their roles as inflammatory mediators in diseases such as asthma, chronic obstructive pulmonary disease, inflammatory bowel diseases, atopic dermatitis and psoriasis.


Assuntos
Citocinas , Doenças Inflamatórias Intestinais , Imunidade Adaptativa , Humanos , Imunidade Inata , Inflamação , Interleucina-1
15.
Sci Adv ; 8(15): eabj3286, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417234

RESUMO

Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.


Assuntos
Leucemia , Neoplasias , Animais , Linfócitos T CD8-Positivos , Humanos , Células Matadoras Naturais , Leucemia/metabolismo , Camundongos , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
16.
Immunity ; 55(4): 575-577, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417668

RESUMO

Epithelial cells (tuft and goblet cells) interact with immune cells on the "inside" while secreting effector molecules into the topological "outside." In this issue of Immunity, Zhao et al. investigate an interleukin-33 (IL-33) secretion mechanism in goblet cells dependent on O-GlcNAcylation and gasdermin pores facilitating worm expulsion.


Assuntos
Alarminas , Nippostrongylus , Animais , Células Epiteliais , Células Caliciformes , Interleucina-13
17.
Sci Transl Med ; 14(635): eabj6879, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35263149

RESUMO

Obesity has become a major health problem in the industrialized world. Immune regulation plays an important role in adipose tissue homeostasis; however, the initial events that shift the balance from a noninflammatory homeostatic environment toward inflammation leading to obesity are poorly understood. Here, we report a role for the costimulatory molecule programmed death-ligand 1 (PD-L1) in the limitation of diet-induced obesity. Functional ablation of PD-L1 on dendritic cells (DCs) using conditional knockout mice increased weight gain and metabolic syndrome during diet-induced obesity, whereas PD-L1 expression on type 2 innate lymphoid cells (ILC2s), T cells, and macrophages was dispensable for obesity control. Using in vitro cocultures, DCs interacted with T cells and ILC2s via the PD-L1:PD-1 axis to inhibit T helper type 1 proliferation and promote type 2 polarization, respectively. A role for PD-L1 in adipose tissue regulation was also shown in humans, with a positive correlation between PD-L1 expression in visceral fat of people with obesity and elevated body weight. Thus, we define a mechanism of adipose tissue homeostasis controlled by the expression of PD-L1 by DCs, which may be a clinically relevant finding with regard to immune-related adverse events during immune checkpoint inhibitor therapy.


Assuntos
Antígeno B7-H1 , Dieta , Obesidade , Linfócitos T , Tecido Adiposo/metabolismo , Animais , Antígeno B7-H1/metabolismo , Imunidade Inata , Inflamação , Linfócitos/metabolismo , Camundongos , Obesidade/metabolismo
18.
Cell Metab ; 34(3): 487-501.e8, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235776

RESUMO

The Krebs cycle-derived metabolite itaconate and its derivatives suppress the inflammatory response in pro-inflammatory "M1" macrophages. However, alternatively activated "M2" macrophages can take up itaconate. We therefore examined the effect of itaconate and 4-octyl itaconate (OI) on M2 macrophage activation. We demonstrate that itaconate and OI inhibit M2 polarization and metabolic remodeling. Examination of IL-4 signaling revealed inhibition of JAK1 and STAT6 phosphorylation by both itaconate and OI. JAK1 activation was also inhibited by OI in response to IL-13, interferon-ß, and interferon-γ in macrophages and in T helper 2 (Th2) cells. Importantly, JAK1 was directly modified by itaconate derivatives at multiple residues, including cysteines 715, 816, 943, and 1130. Itaconate and OI also inhibited JAK1 kinase activity. Finally, OI treatment suppressed M2 macrophage polarization and JAK1 phosphorylation in vivo. We therefore identify itaconate and OI as JAK1 inhibitors, suggesting a new strategy to inhibit JAK1 in M2 macrophage-driven diseases.


Assuntos
Ativação de Macrófagos , Macrófagos , Janus Quinase 1/metabolismo , Janus Quinase 1/farmacologia , Macrófagos/metabolismo , Transdução de Sinais , Succinatos
19.
Mucosal Immunol ; 15(3): 491-503, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35177818

RESUMO

IL-36 cytokines are emerging as potent orchestrators of intestinal inflammation and are being implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the mechanisms through which these cytokines mediate these effects remain to be fully uncovered. Here, we report specifically elevated expression of IL-36α, and not IL-36ß or IL-36γ in the serum of newly diagnosed, treatment naïve, paediatric IBD patients and identify T cells as primary cellular mediators of IL-36 responses in the inflamed gut. IL-36R expression on CD4+ T cells was found to promote intestinal pathology in a murine model of colitis. Consistent with these effects, IL-36R can act as a potent instructor of CD4+ T cell differentiation in vivo, enhancing Th1 responses, while inhibiting the generation of Tregs. In addition, loss of IL-36 responsiveness significantly reduced the migration of pathogenic CD4+ T cells towards intestinal tissues and IL-36 was found to act, uniquely among IL-1 family members, to induce the expression of gut homing receptors in proinflammatory murine and human CD4+ T cells. These data reveal an important role for IL-36 cytokines in driving the colitogenic potential of CD4+ T cells and identify a new mechanism through which they may contribute to disease pathogenesis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Interleucinas/imunologia , Animais , Criança , Colite/metabolismo , Citocinas/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Fenótipo , Linfócitos T Auxiliares-Indutores/metabolismo
20.
Am J Respir Crit Care Med ; 205(5): 550-562, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985402

RESUMO

Rationale: The Toll-like receptor 3 Leu412Phe (TLR3 L412F) polymorphism attenuates cellular antiviral responses and is associated with accelerated disease progression in idiopathic pulmonary fibrosis (IPF). The role of TLR3 L412F in bacterial infection in IPF or in acute exacerbations (AE) has not been reported. Objectives: To characterize the association between TLR3 L412F and AE-related death in IPF. To determine the effect of TLR3 L412F on the lung microbiome and on antibacterial TLR responses of primary lung fibroblasts from patients with IPF. Methods: TLR-mediated antibacterial and antiviral responses were quantitated in L412F wild-type and 412F-heterozygous primary lung fibroblasts from patients with IPF using ELISA, Western blot analysis, and quantitative PCR. Hierarchical heatmap analysis was employed to establish bacterial and viral clustering in nasopharyngeal lavage samples from patients with AE-IPF. 16S ribosomal RNA quantitative PCR and pyrosequencing were used to determine the effect of TLR3 L412F on the IPF lung microbiome. Measurements and Main Results: A significant increase in AE-related death in patients with 412F-variant IPF was reported. We established that 412F-heterozygous IPF lung fibroblasts have reduced antibacterial TLR responses to LPS (TLR4), Pam3CYSK4 (TLR1/2), flagellin (TLR5), and FSL-1 (TLR6/1) and have reduced responses to live Pseudomonas aeruginosa infection. Using 16S ribosomal RNA sequencing, we demonstrated that 412F-heterozygous patients with IPF have a dysregulated lung microbiome with increased frequencies of Streptococcus and Staphylococcus spp. Conclusions: This study reveals that TLR3 L412F dysregulates the IPF lung microbiome and reduces the responses of IPF lung fibroblasts to bacterial TLR agonists and live bacterial infection. These findings identify a candidate role for TLR3 L412F in viral- and bacterial-mediated AE death.


Assuntos
Fibrose Pulmonar Idiopática , Receptor 3 Toll-Like/genética , Antibacterianos , Antivirais , Progressão da Doença , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/microbiologia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA