Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 860: 160550, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36460115

RESUMO

In the glacier forelands, microbes play a fundamental role in soil development and shaping the vegetation structure. Such ecosystems represent various stages of soil development and are, therefore, an excellent place to study the interrelationship between soil, plants, and microorganisms. The aim of the study was to assess the effects of vegetation and soil physicochemical properties developing after glacier retreat on soil microbial communities. Specifically, abundance, species richness and the composition of arbuscular mycorrhizal fungi (AMF), as well as microbial biomass and community structure in soils were compared between plots established in 800-meter transects of three glacier forelands in northern Sweden. The cover of vascular plants and cryptogams, soil C content, AMF spore density and species richness, AMF biomass indicators, total microbial biomass, and bacterial phospholipid fatty acids (PLFA) were significantly and positively related to the distance from the glacier terminus. On the other hand, macronutrient concentrations and pH decreased along with increasing distance. No significant impact of the distance from the glacier terminus on the ratio fungal/bacterial PLFA was observed. Moreover, we found a significant effect of both glacier and the distance from the glacier terminus on the microbial community structure. AMF species richness and spore density in the glacier forelands were generally low, which is probably due to a limited supply of inoculum in primary successional ecosystems. Most microbial biochemical markers and AMF parameters were positively associated with the number of arbuscular mycorrhizal plant species and vascular plant and lichen cover as well as C content in soil, whereas negatively with soil macronutrients and pH. This could be related to an increase in plant cover and a decrease in soil nutrient levels as plant succession progresses. Our results showed that vegetation, soil C content, and microbial communities are interlinked and exhibit concordant patterns along successional gradients.


Assuntos
Microbiota , Micorrizas , Traqueófitas , Solo/química , Camada de Gelo/microbiologia , Biomassa , Microbiologia do Solo
2.
Sci Total Environ ; 771: 144834, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548716

RESUMO

The lichen Scots pine forests habitats are undergoing rapid disappearance across Europe. Due to the semi-natural character of this habitat and an increase of the nitrification as a result of air pollution, determination of factors responsible for the decrease in lichen field layer cover requires a comprehensive approach. Our study aimed to investigate environmental factors necessary for the determination of active protection measures in order to maintain this vulnerable habitat. Specifically, we aimed to investigate: 1) the environmental factors influencing lichen cover in the lichen Scots pine forests of Bory Tucholskie National Park; 2) the differences in habitat variables between sites with lichen-rich and bryophyte-rich field layers. In our study, we used vegetation and microhabitat properties data collected over three years of surveys, as well as ALS LiDAR data. Our results indicated that lichen and bryophyte cover, tree height, tree cover, thickness of organic matter layer, soil temperature and soil water content differed between lichen-rich and bryophyte-rich sites. We found a significant negative relationship between lichen cover recorded within the field layer and tree height. The lichen-rich field layer developed better in areas with lower tree height and thinner layer of organic matter, which created a favorable habitat conditions for lichen development. Our research revealed the previously unknown impact of tree height for the development of lichen field layer. These findings can be used to plan the active conservation measures of lichen Scots pine forests.


Assuntos
Líquens , Ecossistema , Europa (Continente) , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA