Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Virol Sin ; 39(2): 251-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219860

RESUMO

Viral encephalitis continues to be a significant public health concern. In our previous study, we discovered a lower expression of antiviral factors, such as IFN-ß, STING and IFI16, in the brain tissues of patients with Rasmussen's encephalitis (RE), a rare chronic neurological disorder often occurred in children, characterized by unihemispheric brain atrophy. Furthermore, a higher cumulative viral score of human herpes viruses (HHVs) was also found to have a significant positive correlation with the unihemispheric atrophy in RE. Type I IFNs (IFN-I) signaling is essential for innate anti-infection response by binding to IFN-α/ß receptor (IFNAR). In this study, we infected WT mice and IFNAR-deficient A6 mice with herpes simplex virus 1 (HSV-1) via periocular injection to investigate the relationship between IFN-I signaling and HHVs-induced brain lesions. While all mice exhibited typical viral encephalitis lesions in their brains, HSV-induced epilepsy was only observed in A6 mice. The gene expression matrix, functional enrichment analysis and protein-protein interaction network revealed four gene models that were positively related with HSV-induced epilepsy. Additionally, ten key genes with the highest scores were identified. Taken together, these findings indicate that intact IFN-I signaling can effectively limit HHVs induced neural symptoms and brain lesions, thereby confirming the positive correlation between IFN-I signaling repression and brain atrophy in RE and other HHVs encephalitis.


Assuntos
Encéfalo , Epilepsia , Herpesvirus Humano 1 , Interferon Tipo I , Transdução de Sinais , Animais , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos , Encéfalo/patologia , Encéfalo/virologia , Epilepsia/virologia , Epilepsia/patologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/deficiência , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Mapas de Interação de Proteínas , Herpes Simples/virologia , Herpes Simples/patologia , Herpes Simples/imunologia , Encefalite por Herpes Simples/virologia , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/patologia , Humanos
2.
Emerg Microbes Infect ; 13(1): 2300466, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164719

RESUMO

During its global epidemic, Zika virus (ZIKV) attracted widespread attention due to its link with various severe neurological symptoms and potential harm to male fertility. However, the understanding of how ZIKV invades and persists in the male reproductive system is limited due to the lack of immunocompetent small animal models. In this study, immunocompetent murine models were generated by using anti-IFNAR antibody blocked C57BL/6 male mice and human STAT2 (hSTAT2) knock in (KI) male mice. After infection, viral RNA could persist in the testes even after the disappearance of viremia. We also found a population of ZIKV-susceptible S100A4+ monocytes/macrophages that were recruited into testes from peripheral blood and played a crucial role for ZIKV infection in the testis. By using single-cell RNA sequencing, we also proved that S100A4+ monocytes/macrophages had a great impact on the microenvironment of ZIKV-infected testes, thus promoting ZIKV-induced testicular lesions. In conclusion, this study proposed a novel mechanism of long-term ZIKV infection in the male reproductive system.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Masculino , Camundongos , Animais , Zika virus/genética , Testículo , Monócitos , Camundongos Endogâmicos C57BL , Macrófagos , Modelos Animais de Doenças , Proteína A4 de Ligação a Cálcio da Família S100
3.
J Virol ; 97(10): e0100623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732785

RESUMO

IMPORTANCE: Zika virus (ZIKV) infection in pregnant women during the third trimester can cause neurodevelopmental delays and cryptorchidism in children without microcephaly. However, the consequences of congenital ZIKV infection on fertility in these children remain unclear. Here, using an immunocompetent mouse model, we reveal that congenital ZIKV infection can cause hormonal disorders of the hypothalamic-pituitary-gonadal axis, leading to reduced fertility and decreased sexual preference. Our study has for the first time linked the hypothalamus to the reproductive system and social behaviors after ZIKV infection. Although the extent to which these observations in mice translate to humans remains unclear, these findings did suggest that the reproductive health and hormone levels of ZIKV-exposed children should receive more attention to improve their living quality.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Gravidez , Fertilidade , Hormônios , Eixo Hipotalâmico-Hipofisário-Gonadal , Microcefalia , Complicações Infecciosas na Gravidez/virologia , Zika virus/fisiologia , Infecção por Zika virus/patologia
4.
Nat Commun ; 14(1): 2476, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120617

RESUMO

Zika virus (ZIKV) is a potential threat to male reproductive health but the mechanisms underlying its influence on testes during ZIKV infection remain obscure. To address this question, we perform single-cell RNA sequencing using testes from ZIKV-infected mice. The results reveal the fragility of spermatogenic cells, especially spermatogonia, to ZIKV infection and show that the genes of the complement system are significantly upregulated mainly in infiltrated S100A4 + monocytes/macrophages. Complement activation and its contribution to testicular damage are validated by ELISA, RT‒qPCR and IFA and further verify in ZIKV-infected northern pigtailed macaques by RNA genome sequencing and IFA, suggesting that this might be the common response to ZIKV infection in primates. On this basis, we test the complement inhibitor C1INH and S100A4 inhibitors sulindac and niclosamide for their effects on testis protection. C1INH alleviates the pathological change in the testis but deteriorates ZIKV infection in general. In contrast, niclosamide effectively reduces S100A4 + monocyte/macrophage infiltration, inhibits complement activation, alleviates testicular damage, and rescues the fertility of male mice from ZIKV infection. This discovery therefore encourages male reproductive health protection during the next ZIKV epidemic.


Assuntos
Infecção por Zika virus , Zika virus , Masculino , Camundongos , Animais , Zika virus/genética , Niclosamida , Ativação do Complemento , Análise de Sequência de RNA
5.
Virol Sin ; 38(1): 66-74, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36241087

RESUMO

Zika virus (ZIKV) poses a serious threat to global public health due to its close relationship with neurological and male reproductive damage. However, deficiency of human testicular samples hinders the in-depth research on ZIKV-induced male reproductive system injury. Organoids are relatively simple in vitro models, which could mimic the pathological changes of corresponding organs. In this study, we constructed a 3D testicular organoid model using primary testicular cells from adult BALB/c mice. Similar to the testis, this organoid system has a blood-testis barrier (BTB)-like structure and could synthesize testosterone. ZIKV tropism of testicular cells and ZIKV-induced pathological changes in testicular organoid was also similar to that in mammalian testis. Therefore, our results provide a simple and reproducible in vitro testicular model for the investigations of ZIKV-induced testicular injury.


Assuntos
Infecção por Zika virus , Zika virus , Masculino , Humanos , Camundongos , Animais , Testículo/patologia , Organoides/patologia , Mamíferos
6.
Virol Sin ; 37(4): 601-609, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714850

RESUMO

As a member of vector-borne viruses, Zika virus (ZIKV) can cause microcephaly and various neurological symptoms in newborns. Previously, we found that ZIKV could infect hypothalamus, causing a decrease in growth hormone (GH) secretion, growth delay and deficits in learning and memory in suckling mice. Early administration of GH can improve the cognitive function of the mice. Therefore, in this study we further investigated the mechanism underlying the protective role of GH in ZIKV infection in suckling mice. Our results showed that GH could effectively reduce brain damage caused by ZIKV infection via reducing cell apoptosis and inflammatory response rather than inhibiting viral replication. Our results provide important evidences not only for understanding the mechanism underlying ZIKV-associated neurological symptoms but also for the treatment of ZIKV infection.


Assuntos
Microcefalia , Infecção por Zika virus , Zika virus , Animais , Encéfalo , Hormônio do Crescimento/farmacologia , Camundongos , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
7.
J Neuroinflammation ; 19(1): 70, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35337341

RESUMO

BACKGROUND: The etiology of Rasmussen's encephalitis (RE), a rare chronic neurological disorder characterized by CD8+ T cell infiltration and unihemispheric brain atrophy, is still unknown. Various human herpes viruses (HHVs) have been detected in RE brain, but their contribution to RE pathogenesis is unclear. METHODS: HHVs infection and relevant immune response were compared among brain tissues from RE, temporal lobe epilepsy (TLE) and traumatic brain injury (TBI) patients. Viral antigen or genome, CD8+ T cells, microglia and innate immunity molecules were analyzed by immunohistochemical staining, DNA dot blot assay or immunofluorescence double staining. Cytokines were measured by multiplex flow cytometry. Cell apoptosis was visualized by TUNEL staining. Viral infection, immune response and the severity of unihemispheric atrophy were subjected to correlation analysis. RESULTS: Antigens of various HHVs were prevalent in RE and TLE brains, and the cumulative viral score of HHVs positively correlated with the unihemispheric atrophy in RE patients. CD8+ T cells infiltration were observed in both RE and TLE brains and showed co-localization with HHV antigens, but their activation, as revealed by Granzyme B (GZMB) release and apoptosis, was found only in RE. In comparison to TLE, RE brain tissues contained higher level of inflammatory cytokines, but the interferon-ß level, which was negatively correlated with cumulative viral score, was relatively lower. In line with this, the DNA sensor STING and IFI16, rather than other innate immunity signaling molecules, were insufficiently activated in RE. CONCLUSIONS: Compared with TBI, both RE and TLE had prevalently HHV infection and immune response in brain tissues. However, in comparison to TLE, RE showed insufficient activation of antiviral innate immunity but overactivation of cytotoxic T cells. Our results show the relatively lower level of antiviral innate immunity and overactivation of cytotoxic T cells in RE cases upon HHV infection, the overactivated T cells might be a compensate to the innate immunity but the causative evidence is lack in our study and need more investigation in the future.


Assuntos
Encefalite , Epilepsia do Lobo Temporal , Vírus , Encéfalo/metabolismo , Encefalite/patologia , Epilepsia do Lobo Temporal/patologia , Humanos , Interferon beta , Vírus/metabolismo
8.
J Med Virol ; 94(2): 499-506, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453756

RESUMO

Chikungunya fever is an acute infectious disease caused by the chikungunya virus (CHIKV) that is characterized by fever, rash, and joint pain. CHIKV has infected millions of people in Africa, Asia, America, and Europe since it re-emerged in the Indian Ocean region in 2004. Here, we report an outbreak of Chikungunya fever that occurred in Ruili of Yunnan Province, a city located on the border between China and Myanmar, in September 2019. The outbreak lasted for three months from September to December. Overall, 112 cases were confirmed by a real-time reverse-transcription polymerase chain reaction in the Ruili People's Hospital, and they showed apparent temporal, spatial, and population aggregation. Among them, 91 were local cases distributed in 19 communities of Ruili City, and 21 were imported cases. The number of female patients was higher than that of male patients, and most patients were between 20 and 60 years old. The main clinical manifestations included joint pain (91.96%), fever (86.61%), fatigue (58.04%), chills (57.14%), rash (48.21%), headache (39.29%), and so forth. Biochemical indexes revealed increased C-reactive protein (63.39%), lymphopenia (57.17%), increased hemoglobin (33.04%), neutrophilia (28.57%), and thrombocytopenia (16.07%). Phylogenetic analysis of the complete sequences indicated that the CHIKV strains in this outbreak belonged to the Indian Ocean clade of the East/Central/South African genotype. We speculated that this chikungunya outbreak might be caused by CHIKV-infected persons returning from Myanmar, and provided a reference for the formulation of effective treatment and prevention measures.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/fisiopatologia , Vírus Chikungunya/isolamento & purificação , Filogenia , Adulto , Artralgia/etiologia , Vírus Chikungunya/genética , China/epidemiologia , Cidades/epidemiologia , Surtos de Doenças , Feminino , Febre/etiologia , Genoma Viral/genética , Humanos , Leucopenia/etiologia , Masculino , Pessoa de Meia-Idade , Mianmar , Reação em Cadeia da Polimerase em Tempo Real , Trombocitopenia/etiologia , Adulto Jovem
9.
Virol Sin ; 36(4): 667-677, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33534086

RESUMO

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus, which causes the most commonly diagnosed viral encephalitis named Japanese encephalitis (JE) in the world with an unclear pathogenesis. Axl, a receptor tyrosine kinase from TAM family, plays crucial role in many inflammatory diseases. We have previously discovered that Axl deficiency resulted in more severe body weight loss in mice during JEV infection, which we speculate is due to the anti-inflammatory effect of Axl during JE. Currently, the role of Axl in regulating the neuroinflammation and brain damage during JE has not been investigated yet. In this study, by using Axl deficient and heterozygous control mice, we discovered that Axl deficient mice displayed accelerated JE progression and exacerbated brain damage characterized by increased neural cell death, extended infiltration of inflammatory cells, and enhanced production of pro-inflammatory cytokines, in comparison to control mice. Additionally, consistent with our previous report, Axl deficiency had no impact on the infection and target cell tropism of JEV in brain. Taken together, our results suggest that Axl plays an anti-inflammatory and neuroprotective role during the pathogenesis of JE.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos
10.
Ann Clin Transl Neurol ; 8(3): 558-570, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465303

RESUMO

OBJECTIVE: Rasmussen's encephalitis (RE) is a rare and severe progressive epileptic syndrome with unknown etiology. Infection by viruses such as human cytomegalovirus (HCMV) has been hypothesized to be a potential trigger for RE. Interferon-induced transmembrane protein-3 (IFITM3) single-nucleotide polymorphism (SNP) rs12252 is associated with the severity of viral infection disease. This study aimed to address the possibility that HCMV infection and IFITM3 rs12252 might be associated with RE disease progression. METHODS: The expression of HCMV and IFITM3 was detected with immunohistochemical staining, in situ hybridization and immunofluorescence double staining. The genotype of IFITM3 rs12252 was detected using the Sanger sequencing method. A genetic association analysis was carried out for this SNP and HCMV antigen expression. The relationship between this SNP and the clinical characteristics of these patients was further analyzed. In in vitro study, HCMV replication in SH-SY5Y cells with overexpressed IFITM3 variant was detected by immunofluorescence and real-time RT-PCR. RESULTS: Elevated expression of HCMV and IFITM3 was observed in the brain tissue of RE patients. Moreover, the IFITM3 polymorphism rs12252-C was found to associate with HCMV high detection and rapid disease progression in RE patients with the IFITM3 rs12252-CC genotype. In vitro study showed the overexpressed IFITM3 variant was associated with HCMV high infection level. CONCLUSION: These results suggest that the IFITM3 rs12252-C is associated with the disease progression of RE patients via facilitating persistent HCMV infection in brain tissue and provides new insight into understanding the pathogenesis of RE.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Progressão da Doença , Encefalite , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Células Cultivadas , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Encefalite/genética , Encefalite/metabolismo , Encefalite/virologia , Encefalite Viral/genética , Encefalite Viral/metabolismo , Encefalite Viral/virologia , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
11.
PLoS Pathog ; 16(12): e1009019, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315931

RESUMO

Testicular invasion and persistence are features of Zika virus (ZIKV), but their mechanisms are still unknown. Here, we showed that S100A4+ macrophages, a myeloid macrophage subpopulation with susceptibility to ZIKV infection, facilitated ZIKV invasion and persistence in the seminiferous tubules. In ZIKV-infected mice, S100A4+ macrophages were specifically recruited into the interstitial space of testes and differentiated into interferon-γ-expressing M1 macrophages. With interferon-γ mediation, S100A4+ macrophages down-regulated Claudin-1 expression and induced its redistribution from the cytosol to nucleus, thus increasing the permeability of the blood-testis barrier which facilitated S100A4+ macrophages invasion into the seminiferous tubules. Intraluminal S100A4+ macrophages were segregated from CD8+ T cells and consequently helped ZIKV evade cellular immunity. As a result, ZIKV continued to replicate in intraluminal S100A4+ macrophages even when the spermatogenic cells disappeared. Deficiencies in S100A4 or interferon-γ signaling both reduced ZIKV infection in the seminiferous tubules. These results demonstrated crucial roles of S100A4+ macrophages in ZIKV infection in testes.


Assuntos
Macrófagos/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/imunologia , Infecção por Zika virus/imunologia , Animais , Claudina-1/genética , Claudina-1/metabolismo , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Viral , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Túbulos Seminíferos/virologia , Testículo/imunologia , Testículo/virologia , Replicação Viral/imunologia , Replicação Viral/fisiologia , Zika virus/imunologia , Infecção por Zika virus/virologia
12.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32611752

RESUMO

Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis (JE), which has an unclear pathogenesis. Despite vaccination, thousands of deaths attributed to JE are reported annually. In this study, we report that mice deficient for Axl, a receptor tyrosine kinase that plays multiple roles in flaviviral infection, displayed greater mortality upon JEV infection. The effect of Axl deficiency on JEV infection was mediated by markedly elevated serum interleukin-1α (IL-1α) levels, which devastated the blood-brain-barrier and promoted viral neuroinvasion within 24 h postinfection. Using an in situ infection model, we showed that dead macrophages were the primary source of observed increased serum IL-1α levels. Axl deficiency enhanced cell death and caused pyroptosis in 80% of JEV-infected macrophages by disrupting phosphatidylinositol 3-kinase (PI3K)-Akt signaling. Intriguingly, the primary effector released by pyroptotic macrophages in our model was IL-1α rather than IL-1ß. Finally, we assessed the effect of an IL-1α antagonist and demonstrated that it effectively prevented the incidence of JE. Our results indicate that Axl plays a protective role in JEV infection, identify IL-1α released by pyroptotic macrophages as a crucial factor promoting JEV neuroinvasion, and suggest that an IL-1α antagonist may be a candidate for JE therapy.IMPORTANCE Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes Japanese encephalitis (JE), the most commonly diagnosed viral encephalitis worldwide. The fatality rate of JE is 20%, and nearly half of the surviving patients develop neuropsychiatric sequelae. Axl is a receptor tyrosine kinase that plays multiple roles in flaviviral infections. Currently, the involvement of Axl in JEV infection remains enigmatic. In this study, we demonstrate that Axl impedes the pathogenesis of severe JE in mice by maintaining blood-brain-barrier (BBB) integrity and restricting viral neuroinvasion. Furthermore, serum IL-1α is a key mediator of this process and is primarily released by JEV-infected pyroptotic macrophages to elicit BBB breakdown, while an IL-1α antagonist can effectively reduce the incidence of severe JE. Our work uncovers the protective role of Axl in antagonizing severe JE and shows that the use of an IL-1α antagonist may be a promising tactic to prevent severe JE.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Interleucina-1alfa/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/virologia , Modelos Animais de Doenças , Encefalite Viral/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Piroptose , Receptor Tirosina Quinase Axl
13.
Viruses ; 12(3)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213866

RESUMO

The Japanese encephalitis virus (JEV) is a Culex mosquito-borne flavivirus and is the pathogenic agent of Japanese encephalitis, which is the most important type of viral encephalitis in the world. Macrophages are a type of pivotal innate immunocyte that serve as sentinels and respond quickly to pathogen invasions. However, some viruses like JEV can hijack macrophages as a refuge for viral replication and immune escape. Despite their crucial involvement in early JEV infection, the transcriptomic landscapes of JEV-infected macrophages are void. Here, by using an in situ JEV infection model, we investigate the transcriptomic alteration of JEV-infected peritoneal macrophages. We found that, upon JEV infection, the macrophages underwent M1 polarization and showed the drastic activation of innate immune and inflammatory pathways. Interestingly, almost all the programmed cell death (PCD) pathways were activated, especially the apoptosis, pyroptosis, and necroptosis pathways, which were verified by the immunofluorescent staining of specific markers. Further transcriptomic analysis and TUNEL staining revealed that JEV infection caused apparent DNA damage. The transcriptomic analysis also revealed that JEV infection promoted ROS and RNS generation and caused oxidative stress, which activated multiple cell death pathways. Our work uncovers the pivotal pathogenic roles of oxidative stress and multiple PCD pathways in JEV infection, providing a novel perspective on JEV-host interactions.


Assuntos
Apoptose/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/genética , Encefalite Japonesa/virologia , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Macrófagos/virologia , Transcriptoma , Animais , Dano ao DNA , Encefalite Japonesa/metabolismo , Feminino , Ativação de Macrófagos/genética , Camundongos , Estresse Oxidativo , Carga Viral
14.
Zool Res ; 41(1): 90-93, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31746566

RESUMO

The development of an effective tetravalent vaccine against dengue viruses (DENVs) has become a world priority. We previously showed that four monovalent dengue DNA vaccines expressing premembrane (prM) and envelope (E) proteins displayed effective protection against corresponding challenges in mice. Thus, to elucidate the overall immunity and persistence of the tetravalent formulation (TetraME), we evaluated the humoral and cellular immune responses as well as the long-term protection in the current study. TetraME-immunized mice displayed increased production of Th1/Th2-typed cytokines upon stimulation with heterologous DENV antigens. Moreover, high levels of tetravalent DENV antibodies and sterilized immunity were detected long-term (30 weeks after immunization). These findings provide feasible validation for the potential utility of this vaccine formulation.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Citocinas/genética , Citocinas/metabolismo , Camundongos , Vacinas de DNA/imunologia
15.
Cell Rep ; 25(6): 1537-1547.e4, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404008

RESUMO

Zika virus (ZIKV) can cause microcephaly in the fetus. However, its effects on body growth and the development of children with postnatal ZIKV infection are largely unknown. To examine this, we intraperitoneally challenged mouse pups with ZIKV. Infection causes an irreversible growth delay and deficits in spatial learning and memory, with growth-relevant hormones significantly reduced during infection. These effects are associated with ZIKV RNA expression in the hypothalamus, blood, and brain but not in the pituitary and thyroid. Infection is also associated with hypothalamic inflammation, and ZIKV antigen is detectable in neuroendocrine cells producing thyrotropin-releasing hormone. Moreover, early administration of growth hormone could significantly improve growth delay. Our results demonstrate that ZIKV can infect the hypothalamus, causing multi-hormone deficiencies and delayed growth and development in a mouse model. Therefore, prospective multidisciplinary follow-up of ZIKV-infected children may be necessary to understand potential effects of this virus on childhood development.


Assuntos
Crescimento e Desenvolvimento , Hormônios/deficiência , Hipotálamo/virologia , Transtornos da Memória/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Aprendizagem , Transtornos da Memória/complicações , Camundongos Endogâmicos BALB C , Hipófise/patologia , Glândula Tireoide/patologia , Infecção por Zika virus/complicações
16.
J Gen Virol ; 98(8): 2061-2068, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28786784

RESUMO

Recently, Zika virus (ZIKV) outbreak has been associated with a sharp increase in cases of Guillain-Barré syndrome and severe fetal abnormalities. However, the mechanism underlying the interaction of ZIKV with host cells is not yet clear. Axl, a receptor tyrosine kinase, is postulated as a receptor for ZIKV entry; however, its in vivo role during ZIKV infection and its impact on the outcome of the disease have not been fully characterized and evaluated. Moreover, there are contradictory results on its involvement in ZIKV infection. Here we utilized Axl-deficient mice (Axl-/-) and their littermates (Axl+/-) to study the in vivo role of Axl in ZIKV infection. Our results showed that both Axl+/- and Axl-/- suckling mice supported the replication of ZIKV and presented clinical manifestations. No significant difference has been found between Axl-deficient mice and their littermates in terms of the survival rate, clinical manifestations, viral load, ZIKV distribution and histopathological changes in major organs. These results therefore indicate that Axl is not an indispensable factor for ZIKV infection in mice.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Animais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Internalização do Vírus , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Receptor Tirosina Quinase Axl
17.
Artigo em Inglês | MEDLINE | ID: mdl-28680856

RESUMO

Flaviviruses including Dengue virus (DENV), Yellow fever virus (YFV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) are global health problems that caused several serious diseases such as fever, hemorrhagic fever, and encephalitis in the past century. Recently, Zika virus (ZIKV) which spreads from Asia to American and causes millions of infections emerges as a new dangerous member of the genus of Flavivirus. Unlike other well-known flaviviruses, ZIKV can be transmitted sexually and infect testes in murine models. Its impacts on sperm functions, and the exact susceptible cells, however, are not entirely clear. To investigate these issues, we infected interferon α/ß and γ receptors deficient AG6 mice with ZIKV and examined the outcomes of infection using an assortment of physiological, histopathological, immunological, and virological techniques. We found that infected mice displayed signs of reproductive system disorder, altered androgen levels in serum, and high viral load in semen and testes. Additionally, histopathological examinations revealed marked atrophy of seminiferous tubules and significant reduction in lumen size. Notably, these were accompanied by positive staining of ZIKV antigens on sertoli cells, detection of viral particles and vacuole changes within cytoplasm of sertoli cells. The susceptibility of sertoli cells to ZIKV was further validated in vitro study using cell lines. Importantly, the disruption of tight junctions within testis and altered sperm morphology were also observed in ZIKV infected mice. It is well-known that tight junctions formed by adjacent sertoli cells are major component of blood testis barrier, which plays important roles in maintenance of microenvironment for spermagenesis in testis. Taken together, these results demonstrate that sertoli cells are susceptible to ZIKV infection, which results in the disruption of tight junctions in testis and causes abnormal spermatogenesis in mice. These results also imply that long-term impact of ZIKV infection on human male reproductive system requires close monitoring.


Assuntos
Células de Sertoli/imunologia , Células de Sertoli/patologia , Testículo/imunologia , Infecção por Zika virus/imunologia , Zika virus/patogenicidade , Animais , Antígenos Virais , Barreira Hematotesticular/imunologia , Barreira Hematotesticular/patologia , Barreira Hematotesticular/virologia , Linhagem Celular , Dengue/imunologia , Dengue/patologia , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Túbulos Seminíferos/patologia , Túbulos Seminíferos/virologia , Células de Sertoli/virologia , Espermatogênese , Taxa de Sobrevida , Testículo/patologia , Testículo/ultraestrutura , Testículo/virologia , Proteínas de Junções Íntimas/metabolismo , Transcriptoma , Carga Viral , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
18.
Mol Immunol ; 54(2): 109-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23270684

RESUMO

Public health is still seriously threatened by dengue virus (DENV) and no vaccine against DENV is yet available for clinical use till now. In this study, DNA vaccine candidates encoding DENV serotype 2 (DENV-2) prM/E (premembrane and envelope proteins) and NS1 (non-structural 1 protein) with or without a gene adjuvant, granulocyte-macrophage colony-stimulating factor (GM-CSF), were evaluated in the aspects of immunity and protective efficacy in mice. We constructed three plasmids, pCAG-prM/E (which only expressed DENV2 prM/E), pCAG-prM/E/NS1 (which only expressed DENV2 prM/E/NS1) and pCAG-DG (which co-expressed DENV2 prM/E/NS1 and GM-CSF). The expressions of the recombined plasmids were analyzed by immuno-staining in Vero cells. Antibody responses and neutralization activity of the sera from the mice were assayed by ELISA and plaque reduction neutralization test after immunization with the plasmids. Immunized BALB/c mice were intracerebrally challenged with DENV2 to evaluate protective efficacy of the plasmids. The recombinant plasmids could be efficiently expressed in Vero cells and induced different levels of specific anti-DENV2 immune responses. The immunized mice were partially protected. The highest survival rate was observed in the pCAG-DG group although the anti-DENV2 titer and neutralization antibody titer were not the highest among the three groups. Our data suggested that pCAG-DG offered better protection against DENV2 infection.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Dengue/mortalidade , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Feminino , Imunização , Camundongos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
19.
Bing Du Xue Bao ; 28(3): 207-12, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22764521

RESUMO

To investigate the adjuvant effect of granulocyte macrophage colony stimulating factor (GM-CSF) in Flaviviridae virus DNA vaccines. After DNA immunization, the antibody levels of serum from mice were detected by ELISA and indirect immunofluorescence assay. Co-immunization of GM-CSF suppressed the immune responses induced by DV1 and DV2 candidate vaccines whereas enhanced the immune response induced by HCV C and E1 DNA vaccines. As genetic adjuvant for DNA vaccines, GM-CSF might display complex diversity on the immune responses: an augmentation or suppression due to different immunogens. Therefore, GM-CSF should be used with some cautions in clinic.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , DNA Viral/imunologia , Dengue/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Hepatite C/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , DNA Viral/administração & dosagem , DNA Viral/genética , Dengue/prevenção & controle , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vacinas contra Dengue/imunologia , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
20.
PLoS Negl Trop Dis ; 4(8)2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20824170

RESUMO

BACKGROUND: Increased vascular permeability is a hallmark feature in severe dengue virus (DV) infection, and dysfunction of endothelial cells has been speculated to contribute in the pathogenesis of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Rho-family GTPase Rac1 is a significant element of endothelial barrier function regulation and has been implicated in the regulation of actin remodeling and intercellular junction formation. Yet there is little evidence linking Rac1 GTPase to alteration in endothelial cell function induced by DV infection. METHODS AND FINDINGS: Here, we showed that actin is essential for DV serotype 2 (DV2) entry into and release from ECV304 cells, and Rac1 signaling is involved these processes. At early infection, actin cytoskeleton rearranged significantly during 1 hour post infection, and disrupting actin filament dynamics with jasplakinolide or cytochalasin D reduced DV2 entry. DV2 entry induced reduction of Rac1 activity within 1 hour post infection. The expression of dominant-negative forms of Rac1 established that DV2 entry is negatively regulated by Rac1. At late infection, actin drugs also inhibited the DV2 release and induced accumulation of viral proteins in the cytoplasm. Meanwhile, the activity of Rac1 increased significantly with the progression of DV2 infection and was up-regulated in transfected cells expressing E protein. Confocal microscopy showed that DV2 E protein was closely associated with either actin or Rac1 in DV2-infected cells. The interaction between E protein and actin was further confirmed by co-immunoprecipitation assay. CONCLUSIONS: These results defined roles for actin integrity in DV2 entry and release, and indicated evidence for the participation of Rac1 signaling pathways in DV2-induced actin reorganizations and E-actin interaction. Our results may provide further insight into the pathogenesis of DHF/DSS.


Assuntos
Actinas/metabolismo , Vírus da Dengue/patogenicidade , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Aedes , Animais , Linhagem Celular , Imunoprecipitação , Microscopia Confocal , Internalização do Vírus , Liberação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA