Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Autoimmun ; 147: 103262, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833897

RESUMO

Th17 cells mediated immune response is the basis of a variety of autoimmune diseases, including multiple sclerosis and its mouse model of immune aspects, experimental autoimmune encephalomyelitis (EAE). The gene network that drives both the development of Th17 and the expression of its effector program is dependent on the transcription factor RORγt. In this report, we showed that Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1) formed a complex with RORγt, and enhanced its transactivation activity, thus sustained the expression of the effector genes as well as RORγt in the EAE-pathogenic Th17 cells. We first found out that PIN1 was highly expressed in the samples from patients of multiple sclerosis, and the expression of Pin1 by the infiltrating lymphocytes in the central nerve system of EAE mice was elevated as well. An array of experiments with transgenic mouse models, cellular and molecular assays was included in the study to elucidate the role of Pin1 in the pathology of EAE. It turned out that Pin1 promoted the activation and maintained the effector program of EAE-pathogenic Th17 cells in the inflammation foci, but had little effect on the priming of Th17 cells in the draining lymph nodes. Mechanistically, Pin1 stabilized the phosphorylation of STAT3 induced by proinflammatory stimuli, and interacted with STAT3 in the nucleus of Th17 cells, which resulted in the increased expression of Rorc. Moreover, Pin1 formed a complex with RORγt, and enhanced the transactivation of RORγt to the +11 kb enhancer of Rorc, which enforced and maintained the expression of both Rorc and the effector program of pathogenic Th17 cells in EAE. Finally, the inhibition of Pin1, by genetic knockdown or by small molecule inhibitor, deceased the population of Th17 cells and the neuroinflammation, and alleviated the symptoms of EAE. These findings suggest that Pin1 is a potential therapeutic target for MS and other autoimmune inflammatory diseases.

2.
Front Immunol ; 12: 620238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717117

RESUMO

Pin1 is the only known peptidyl-prolyl cis-trans isomerase (PPIase) that can specifically recognize and isomerize the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif, change the conformation of proteins through protein phosphorylation, thus regulate various cellular processes in the body. Pin1 plays an important role in cancer, Alzheimer's disease, and autoimmune diseases. However, the specific mechanism of Pin1 regulation in LPS-induced septic shock is unclear. Here, we found that lack of Pin1 reduced shock mortality and organ damage in mice, and NLRP3 inflammasome activation also was reduced in this process. We further confirmed that Pin1 can affect the expression of NLRP3, ASC, Caspase1, and this process can be regulated through the p38 MAPK pathway. We analyzed that p38 MAPK signaling pathway was highly expressed in septic shock and showed a positive correlation with Pin1 in the Gene Expression Omnibus database. We found that Pin1 could affect the phosphorylation of p38 MAPK, have no obvious difference in extracellular signal-regulated kinases (ERK) and Jun-amino-terminal kinase (JNK) signaling. We further found that Pin1 and p-p38 MAPK interacted, but not directly. In addition, Pin1 deficiency inhibited the cleavage of gasdermin D (GSDMD) and promoted the death of macrophages with LPS treatment, and reduced secretion of inflammatory cytokines including IL-1ß and IL-18. In general, our results suggest that Pin1 regulates the NLRP3 inflammasome activation by p38 MAPK signaling pathway in macrophages. Thus, Pin1 may be a potential target for the treatment of inflammatory diseases such as septic shock.


Assuntos
Inflamassomos/metabolismo , Sistema de Sinalização das MAP Quinases , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Choque Séptico/etiologia , Choque Séptico/metabolismo , Animais , Biomarcadores , Biópsia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Proteólise , Choque Séptico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA