Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 212: 262-271, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30145418

RESUMO

Academics researchers and "citizen scientists" from 22 countries confirmed that yellow mealworms, the larvae of Tenebrio molitor Linnaeus, can survive by eating polystyrene (PS) foam. More detailed assessments of this capability for mealworms were carried out by12 sources: five from the USA, six from China, and one from Northern Ireland. All of these mealworms digested PS foam. PS mass decreased and depolymerization was observed, with appearance of lower molecular weight residuals and functional groups indicative of oxidative transformations in extracts from the frass (insect excrement). An addition of gentamycin (30 mg g-1), a bactericidal antibiotic, inhibited depolymerization, implicating the gut microbiome in the biodegradation process. Microbial community analyses demonstrated significant taxonomic shifts for mealworms fed diets of PS plus bran and PS alone. The results indicate that mealworms from diverse locations eat and metabolize PS and support the hypothesis that this capacity is independent of the geographic origin of the mealworms, and is likely ubiquitous to members of this species.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Besouros/metabolismo , Microbioma Gastrointestinal/fisiologia , Larva/metabolismo , Poliestirenos/metabolismo , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , China , Besouros/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Gentamicinas/farmacologia , Larva/crescimento & desenvolvimento
2.
Chemosphere ; 191: 979-989, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29145143

RESUMO

Commercial production of polystyrene (PS) -a persistent plastic that is not biodegradable at appreciable rates in most environments-has led to its accumulation as a major contaminant of land, rivers, lakes, and oceans. Recently, however, an environment was identified in which PS is susceptible to rapid biodegradation: the larval gut of Tenebrio molitor Linnaeus (yellow mealworms). In this study, we evaluate PS degradation capabilities of a previously untested strain of T. molitor and assess its survival and PS biodegradation rates for a range of conditions (two simulated food wastes, three temperatures, seven PS waste types). For larvae fed PS alone, the %PS removed in the short (12-15 h) residence time of the mealworm gut gradually increased for 2-3 weeks then stabilized at values up to 65%. Thirty two-day survival rates were >85% versus 54% for unfed larvae. For mealworms fed ∼10% w/w PS and ∼90% bran, an agricultural byproduct, rates of PS degradation at 25 °C nearly doubled compared to mealworms fed PS alone. Polymer residues in the frass showed evidence of partial depolymerization and oxidation. All of the tested PS wastes degraded, with the less dense foams degrading most rapidly. Mealworms fed bran and PS completed all life cycle stages (larvae, pupae, beetles, egg), and the second generation had favorable PS degradation, opening the door for selective breeding.


Assuntos
Biodegradação Ambiental , Larva/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Poliestirenos/metabolismo , Tenebrio/metabolismo , Animais , Fibras na Dieta/metabolismo , Cinética , Plásticos/metabolismo , Plásticos/toxicidade , Poliestirenos/toxicidade , Fatores de Tempo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA