Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 13: 965708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300114

RESUMO

Objective: The contribution of activating transcription factor 6α (ATF6α) in rheumatoid arthritis (RA) pathogenesis, especially on fibroblast-like synoviocytes (FLSs), has been suggested by its sensitivity to inflammatory stimulus. However, the exact role and therapeutic potential of ATF6α in RA remains to be fully elucidated. Methods: ATF6α expression was determined in joint tissues and FLS, and gain-of-function and loss-of-function analyses were applied to evaluate the biological roles of ATF6α in RA FLSs. A murine collagen-induced arthritis (CIA) model, combining both gene deletion of ATF6α and treatment with the ATF6α inhibitor Ceapin-A7, was employed. Joint inflammation, tissue destruction, circulating levels of inflammatory cytokines were assessed in CIA mice. Transcriptome sequencing analysis (RNASeq), molecular biology, and biochemical approaches were performed to identify target genes of ATF6α. Results: ATF6α expression was significantly increased in synovium of RA patients and in synovium of mice subjected to CIA. ATF6α silencing or inhibition repressed RA FLSs viability and cytokine production but induced the apoptosis. CIA-model mice with ATF6α deficiency displayed decreased arthritic progression, leading to profound reductions in clinical and proinflammatory markers in the joints. Pharmacological treatment of mice with Ceapin-A7 reduced arthritis severity in CIA models. RNA-sequencing of wild-type and knockdown of ATF6α in RA FLSs revealed a transcriptional program that promotes inflammation and suppresses apoptosis, and subsequent experiments identified Baculoviral IAP Repeat Containing 3 (BIRC3) as the direct target for ATF6α. Conclusion: This study highlights the pathogenic role of ATF6α-BIRC3 axis in RA and identifies a novel pathway for new therapies against RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Reumatoide/metabolismo , Artrite Experimental/metabolismo , Apoptose , Inflamação/patologia , Citocinas/uso terapêutico , Fatores Ativadores da Transcrição , RNA
2.
Eur J Nucl Med Mol Imaging ; 49(12): 4025-4036, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35715613

RESUMO

PURPOSE: Fibroblast-like synoviocytes (FLSs) are key effector cells in the inflamed joints of patients with rheumatoid arthritis (RA). Previous studies have suggested that fibroblast activation protein (FAP) is highly expressed in RA-derived FLSs and is a specific marker of activated RA FLSs. In this study, we developed aluminum-[18F]-labeled 1,4,7-triazacyclononane-N,N',N″-triacetic acid-conjugated FAP inhibitor 04 ([18F]AlF-NOTA-FAPI-04) to image RA-FLSs in vitro and arthritic joints in collagen-induced arthritis (CIA) mice and RA patients. METHODS: RA FLSs and NIH3T3 cells transfected with FAP were used to perform in vitro-binding studies. Biodistribution was conducted in normal DBA1 mice. Collagen-induced arthritis (CIA) models with different arthritis scores were subjected to [18F]AlF-NOTA-FAPI-04 and 18F-FDG PET imaging. Histological examinations were performed to evaluate FAP expression and Cy3 dye-labeled FAPI-04(Cy3-FAPI-04) uptake. Blocking studies with excess unlabeled FAPI-04 in CIA mice and NIH3T3 xenografts in immunocompromised mice were used to evaluate the binding specificity of [18F]AlF-NOTA-FAPI-04. Additionally, [18F]AlF-NOTA-FAPI-04 PET imaging was performed on two RA patients. RESULTS: The binding of [18F]AlF-NOTA-FAPI-04 increased significantly in RA FLSs and NIH3T3 cells overexpressing FAP compared to their parental controls (FAP-GFP-NIH3T3 vs. GFP-NIH3T3, 2.40 ± 0.078 vs. 0.297 ± 0.05% AD/105 cells; RA FLSs vs. OA FLSs, 1.54 ± 0.064 vs. 0.343 ± 0.056% AD/105 cells). Compared to 18F-FDG imaging, [18F]AlF-NOTA-FAPI-04 showed high uptake in inflamed joints in the early stage of arthritis, which was positively correlated with the arthritic scores (Pearson r=0.834, P<0.001). In addition, the binding of [18F]AlF-NOTA-FAPI-04 to cells with high FAP expression and the uptake of [18F]AlF-NOTA-FAPI-04 in arthritic joints both could be blocked by excessive unlabeled FAPI-04. Fluorescent staining showed that the intensity of Cy3-FAPI-04 binding to FAP increased accordingly as the expression of FAP protein increased in cells and tissue sections. Furthermore, the uptake of [18F]AlF-NOTA-FAPI-04 in FAP-GFP-NIH3T3 xenografts was significantly higher than that in GFP-NIH3T3 xenograft (35.44 ± 4.27 vs 7.92 ± 1.83% ID/mL). Finally, [18F]AlF-NOTA-FAPI-04 PET/CT imaging in RA patients revealed nonphysiologically high tracer uptake in the synovium of arthritic joints. CONCLUSION: [18F]AlF-NOTA-FAPI-04 is a promising radiotracer for imaging RA FLSs and could potentially complement the current noninvasive diagnostic parameters.


Assuntos
Artrite Experimental , Artrite Reumatoide , Alumínio , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Fluordesoxiglucose F18 , Compostos Heterocíclicos com 1 Anel , Humanos , Camundongos , Células NIH 3T3 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Quinolinas , Distribuição Tecidual
3.
Bioengineered ; 13(4): 10984-10997, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35475473

RESUMO

Euphorbia factor L3 (EFL3) is extracted from Euphorbia lathyris and is known for its anti-inflammatory properties. This study focused on the potential anti-inflammatory and therapeutic effects of EFL3 on rheumatoid arthritis (RA) using fibroblast-like synoviocytes (FLSs) and arthritis animal models. Functional analysis showed that EFL3 could ameliorate the inflammatory phenotype of FLSs derived from RA patients, as evidenced by the decreases in cell viability, migration, invasion and cytokine production. Luciferase activity, Western blotting and immunofluorescence assays demonstrated that EFL3 inhibited the nuclear translocation of the p65 subunit and the subsequent activation of the nuclear factor kappa-Β (NF-κB) pathway. Furthermore, the therapeutic effects of EFL3 against arthritic progression were evidenced by decreases in joint swelling, arthritis scores, inflammatory factor production, synovial hyperplasia, and bone destruction in collagen-induced arthritis (CIA) and tumor necrosis factor-α (TNF-α) transgenic (TNF-tg) mouse models. Molecular analysis identified Rac family small GTPase 1 (Rac1) as the potential target that was required for EFL3-mediated suppression of the inflammatory RA FLS phenotype. In summary, this study uncovered the therapeutic potential of EFL3 in RA, which suggests its future clinical use.


Assuntos
Artrite Reumatoide , Euphorbia , Proteínas Monoméricas de Ligação ao GTP , Sinoviócitos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Euphorbia/metabolismo , Humanos , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/farmacologia , Proteínas Monoméricas de Ligação ao GTP/uso terapêutico , Sinoviócitos/metabolismo , Sinoviócitos/patologia
4.
Arthritis Res Ther ; 23(1): 243, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535196

RESUMO

BACKGROUND: Isopsoralen (IPRN), one of the active ingredients of Psoralea corylifolia Linn, has anti-inflammatory properties. We attempted to investigate the inhibitory effects of IPRN on rheumatoid arthritis (RA) and characterize its potential mechanism. METHODS: RA fibroblast-like synoviocytes (FLSs) and mice with collagen-induced arthritis (CIA) were used as in vitro and in vivo models to analyze the antiarthritic effect of IPRN. Histological analysis of the inflamed joints from mice with CIA was performed using microcomputed tomography (micro-CT) and hematoxylin-eosin (HE) staining. RNA sequencing (RNA-Seq), network pharmacology analysis, molecular docking, drug affinity responsive target stability (DARTS) assay, and cellular thermal shift assay (CETSA) were performed to evaluate the targets of IPRN. RESULTS: IPRN ameliorated the inflammatory phenotype of RA FLSs by inhibiting their cytokine production, migration, invasion, and proangiogenic ability. IPRN also significantly reduced the severity of CIA in mice by decreasing paw thickness, arthritis score, bone damage, and serum inflammatory cytokine levels. A mechanistic study demonstrated that macrophage migration inhibitory factor (MIF), a key protein in the inflammatory process, was the specific target by which IPRN exerted its anti-inflammatory effects in RA FLSs. CONCLUSION: Our study demonstrates the antiarthritic effect of IPRN, which suggests the therapeutic potential of IPRN in RA.


Assuntos
Artrite Reumatoide , Fatores Inibidores da Migração de Macrófagos , Sinoviócitos , Animais , Artrite Reumatoide/tratamento farmacológico , Movimento Celular , Proliferação de Células , Células Cultivadas , Fibroblastos , Furocumarinas , Camundongos , Simulação de Acoplamento Molecular , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA