Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794004

RESUMO

Addressing common challenges such as limited indicators, poor adaptability, and imprecise modeling in gas pre-warning systems for driving faces, this study proposes a hybrid predictive and pre-warning model grounded in time-series analysis. The aim is to tackle the effects of broad application across diverse mines and insufficient data on warning accuracy. Firstly, we introduce an adaptive normalization (AN) model for standardizing gas sequence data, prioritizing recent information to better capture the time-series characteristics of gas readings. Coupled with the Gated Recurrent Unit (GRU) model, AN demonstrates superior forecasting performance compared to other standardization techniques. Next, Ensemble Empirical Mode Decomposition (EEMD) is used for feature extraction, guiding the selection of the Variational Mode Decomposition (VMD) order. Minimal decomposition errors validate the efficacy of this approach. Furthermore, enhancements to the transformer framework are made to manage non-linearities, overcome gradient vanishing, and effectively analyze long time-series sequences. To boost versatility across different mining scenarios, the Optuna framework facilitates multiparameter optimization, with xgbRegressor employed for accurate error assessment. Predictive outputs are benchmarked against Recurrent Neural Networks (RNN), GRU, Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM), where the hybrid model achieves an R-squared value of 0.980975 and a Mean Absolute Error (MAE) of 0.000149, highlighting its top performance. To cope with data scarcity, bootstrapping is applied to estimate the confidence intervals of the hybrid model. Dimensional analysis aids in creating real-time, relative gas emission metrics, while persistent anomaly detection monitors sudden time-series spikes, enabling unsupervised early alerts for gas bursts. This model demonstrates strong predictive prowess and effective pre-warning capabilities, offering technological reinforcement for advancing intelligent coal mine operations.

2.
Sci Rep ; 14(1): 104, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168487

RESUMO

A three-layer microscopic model with Fe atoms as the top and bottom layer and SBR polymer composites as the middle layer and SBR polymer composite was established and studied. By adding C atoms as reinforcement, the stability and elastic modulus and frictional coefficient changes of SBR polymer composites before and after adding C atoms were studied. In this study, the molecular dynamics method was used to change of elastic modulus was observed by stretching, compression and shear of the SBR polymer composite; The simulation shows that after adding C atom the elastic modulus of SBR polymer composite increased, the friction coefficient of polymer composite upper and lower decreases and the relative atomsic concentration, temperature, velocity, overall temperature average, kinetic energy, total energy and MSD in the thickness direction are reduced after adding C atoms. The stability of SBR polymer composites is enhanced, and the deformation under shear is weakened. In addition, it is found that the binding energy between SBR polymer composites and Fe atoms is reduced after adding C atoms.The stability of SBR polymer composites is improved during use. This work provides a method for studying the properties of rubber composites by studying the enhancement of the stability of SBR polymer composites from the microscopic point of view.

3.
Sci Rep ; 13(1): 16507, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783721

RESUMO

In order to study the influence of structural parameters of porous gas bearing and operating parameters of linear compressor on the static and dynamic performance of porous gas bearing, based on gas lubrication theory, Darcy's law and Reynolds equation, the mathematical model and simulation model of porous gas bearing of linear compressor are derived and established. The static and dynamic characteristics of the porous gas bearing of the linear compressor are studied by using Fluent software simulation. According to the simulation results, the effects of inlet pressure, porous material thickness and gas gap on the gas consumption and bearing capacity of the porous gas bearing under different eccentricities are analyzed. The results show that the higher the inlet pressure is, the larger the gas consumption and bearing capacity; the thicker the porous material is, the smaller the gas consumption and the larger the bearing capacity, the thicker the gas gap is, the larger the gas consumption and the smaller the bearing capacity. On the basis of simulation research, considering the difficulties of processing and assembly, multi-objective optimization of porous gas bearings is carried out based on response surface methodology. Taking the bearing capacity and gas consumption as the objective functions, the intake pressure is set between 0.3 and 0.5 MPa, the thickness of porous materials is set between 3 and 5 mm, and the thickness of gas gaps is set between 10 and 20 µm. While ensuring the stable operation of the linear compressor, the optimal combination of design parameters is provided for the optimal design of gas bearings used in linear compressors.

4.
Sci Rep ; 12(1): 2368, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149766

RESUMO

Manipulating the polarizations of electroagnetic waves by flexible and diverse means is desirable for myriad microwave systems. More recently, metasurfaces have emerged as promising alternatives to conventional polarization manipulation components because the flexibility of their geometry means that they can be arbitrarily customized. In this context, a bilayered metasurface is presented to simultaneously manipulate the polarized states of reflected and transmitted microwaves. Regardless of whether an incident electromagnetic wave is x-polarized or y-polarized, the reflected and transmitted waves are converted into their orthogonal waves at the operating frequency. The designed metasurface has a high polarization conversion rate, above 90%, for both normal and oblique incidences. Experimental results verify the correctness of the simulated results. Finally, the axial ratio and surface current distributions are employed to reveal the physics of the polarization manipulation. The proposed metasurface will be beneficial in the design of flexible and versatile polarization converters, has great potential for applications in polarization-controlled devices and is believed to be extendable to higher frequency regimes.

5.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885498

RESUMO

Conventional metamaterial absorbers eliminate the transmitted electromagnetic wave by attaching the metal plate with the unidirectional absorption performance; these absorbers limit the practical applications to a large extent. In this paper, we present a broadband bi-directional metamaterial absorber by etching chip resistors on the resonators for expanding the bandwidth, and two orthogonal I-shaped structures are pasted on the both sides of the ultra-thin substrate (FR-4) instead of the metal plate for enhancing absorptance of the absorber. Simulated results show that absorptance of the designed absorber is larger than 0.9 in 1.43-2.51 GHz along the forward and backward directions under both TE and TM polarizations. Microwave experiments in the chamber are performed to verify the simulations, and the experimental results exhibit the excellent agreement with the simulations. Additionally, two I-shaped structures are orthogonally pasted on an ultrathin substrate, leading to the impedance-matching of both forward and backward directions, and the absorptance can be tailed dynamically via the middle layer of the substrate. The physics of the absorption are visualized by using a transmission line based on equivalent circuits. We claim that the designed bi-directional metamaterial absorber can be a good candidate for electromagnetic stealth and energy harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA