Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Adv Sci (Weinh) ; : e2401583, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659239

RESUMO

The nonselective calcium-permeable Transient Receptor Potential Cation Channel Subfamily V Member4 (TRPV4) channel regulates various physiological activities. Dysfunction of TRPV4 is linked to many severe diseases, including edema, pain, gastrointestinal disorders, lung diseases, and inherited neurodegeneration. Emerging TRPV4 antagonists show potential clinical benefits. However, the molecular mechanisms of TRPV4 antagonism remain poorly understood. Here, cryo-electron microscopy (cryo-EM) structures of human TRPV4 are presented in-complex with two potent antagonists, revealing the detailed binding pockets and regulatory mechanisms of TRPV4 gating. Both antagonists bind to the voltage-sensing-like domain (VSLD) and stabilize the channel in closed states. These two antagonists induce TRPV4 to undergo an apparent fourfold to twofold symmetry transition. Moreover, it is demonstrated that one of the antagonists binds to the VSLD extended pocket, which differs from the canonical VSLD pocket. Complemented with functional and molecular dynamics simulation results, this study provides crucial mechanistic insights into TRPV4 regulation by small-molecule antagonists, which may facilitate future drug discovery targeting TRPV4.

2.
Nat Struct Mol Biol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664565

RESUMO

RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.

3.
JACS Au ; 4(2): 619-634, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425922

RESUMO

In the era of global climate change, the increasingly severe Fusarium head blight (FHB) and deoxynivalenol (DON) contamination have caused economic losses and brought food and feed safety concerns. Recently, an FHB resistance gene Fhb7 coding a glutathione-S transferase (GST) to degrade DON by opening the critical toxic epoxide moiety was identified and opened a new window for wheat breeding and DON detoxification. However, the poor stability of Fhb7 and the elusiveness of the catalytic mechanism hinder its practical application. Herein, we report the first structure of Fhb7 at 2.41 Å and reveal a unique catalytic mechanism of epoxide opening transformation in GST family proteins. Furthermore, variants V29P and M10 showed that 5.5-fold and 266.7-fold longer half-life time than wild-type, respectively, were identified. These variants offer broad substrate scope, and the engineered biosafe Bacillus subtilis overexpressing the variants shows excellent DON degradation performance, exhibiting potential at bacterium engineering to achieve DON detoxification in the feed and biomedicine industry. This work provides a profound mechanistic insight into the enzymatic activities of Fhb7 and paves the way for further utilizing Fhb7-related enzymes in crop breeding and DON detoxification by synthetic biology.

4.
Nat Commun ; 15(1): 2492, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509059

RESUMO

Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.


Assuntos
Morus , Morus/genética , Morus/química , Terpenos , Catálise , Reação de Cicloadição
5.
Nano Lett ; 24(9): 2831-2838, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385633

RESUMO

High-entropy borides hold potential as electrocatalysts for water oxidation. However, the synthesis of the tailored nanostructures remains a challenge due to the thermodynamic immiscibility of polymetallic components. Herein, a FeCoCuMnRuB nanobox decorated with a nanosheet array was synthesized for the first time by a "coordination-etch-reduction" method. The FeCoCuMnRuB nanobox has various structural characteristics to express the catalytic performance; meanwhile, it combines the high-entropy effect of multiple components with the electron trap effect induced by electron-deficient B, synergistically regulating its electronic structure. As a result, FeCoCuMnRuB nanobox exhibits enhanced OER activity with a low overpotential (η10 = 233 mV), high TOF value (0.0539 s-1), small Tafel slope (61 mV/dec), and a satisfactory stability for 200 h, outperforming the high-entropy alloy and low-entropy borides. This work develops a high entropy and electron-deficient B-driven strategy for motivating the catalytic performance of water oxidation, which broadens the structural diversity and category of high-entropy materials.

6.
Virol J ; 21(1): 46, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395970

RESUMO

BACKGROUND: Azvudine has been approved for the treatment of coronavirus disease 2019 (COVID-19) patients in China, and this meta-analysis aims to illustrate the safety of azvudine and its effectiveness in reducing mortality. METHODS: PubMed, Embase, Web of science, Cochrane Library and the Epistemonikos COVID-19 Living Overview of Evidence database (L.OVE) were searched to aggregate currently published studies. Cochrane risk of bias tool and ROBINS-I tool were used to assess the risk of bias of randomized controlled study and cohort study respectively. Odds radios (ORs) with 95% confidence interval (CIs) were combined for dichotomous variables. Publication bias was assessed by Egger's test and funnel plots. RESULTS: A total of 184 articles were retrieved from the included databases and 17 studies were included into the final analysis. Pooled analysis showed that azvudine significantly reduced mortality risk in COVID-19 patients compared with controls (OR: 0.41, 95%CI 0.31-0.54, p < 0.001). Besides, either mild to moderate or severe COVID-19 patients could benefit from azvudine administration. There was no significant difference in the incidence of ICU admission (OR: 0.90, 95%CI 0.47-1.72, p = 0.74) and invasive ventilation (OR: 0.94, 95%CI 0.54-1.62, p = 0.82) between azvudine and control group. The incidence of adverse events was similar between azvudine and control (OR: 1.26, 95%CI 0.59-2.70, p = 0.56). CONCLUSIONS: This meta-analysis suggests that azvudine could reduce the mortality risk of COVID-19 patients, and the safety of administration is acceptable. TRIAL REGISTRATION: PROSPERO; No.: CRD42023462988; URL: https://www.crd.york.ac.uk/prospero/ .


Assuntos
Azidas , COVID-19 , Desoxicitidina/análogos & derivados , Humanos , Estudos de Coortes , China , Bases de Dados Factuais
7.
Biomed Pharmacother ; 173: 116312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417288

RESUMO

Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/genética , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/patologia
8.
Trials ; 25(1): 77, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254211

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 will coexist with humans for a long time, and it is therefore important to develop effective treatments for coronavirus disease 2019 (COVID-19). Recent studies have demonstrated that antiviral therapy is a key factor in preventing patients from progressing to severe disease, even death. Effective and affordable antiviral medications are essential for disease treatment and are urgently needed. Azvudine, a nucleoside analogue, is a potential low-cost candidate with few drug interactions. However, validation of high-quality clinical studies is still limited. METHODS: This is a multicentre, randomized, double-blind, placebo-controlled phase III clinical trial involving 1096 adult patients with mild-to-moderate symptoms of COVID-19 who are at high risk for progression to severe COVID-19. Patients will be randomized to (1) receive azvudine tablets 5 mg daily for a maximum of 7 days or (2) receive placebo five tablets daily. All participants will be permitted to use a standard treatment strategy except antiviral therapy beyond the investigational medications. The primary outcome will be the ratio of COVID-19-related critical illness and all-cause mortality among the two groups within 28 days. DISCUSSION: The purpose of this clinical trial is to determine whether azvudine can prevent patients at risk of severe disease from progressing to critical illness and death, and the results will identify whether azvudine is an effective and affordable antiviral treatment option for COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT05689034. Registered on 18 January 2023.


Assuntos
Azidas , COVID-19 , Desoxicitidina/análogos & derivados , Adulto , Humanos , Estado Terminal , SARS-CoV-2 , Antivirais/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto
9.
Front Med ; 17(6): 1236-1249, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725231

RESUMO

Primary ciliary dyskinesia (PCD) is a highly heterogeneous recessive inherited disorder. FAP54, the homolog of CFAP54 in Chlamydomonas reinhardtii, was previously demonstrated as the C1d projection of the central microtubule apparatus of flagella. A Cfap54 knockout mouse model was then reported to have PCD-relevant phenotypes. Through whole-exome sequencing, compound heterozygous variants c.2649_2657delinC (p. E883Dfs*47) and c.7312_7313insCGCAGGCTGAATTCTTGG (p. T2438delinsTQAEFLA) in a new suspected PCD-relevant gene, CFAP54, were identified in an individual with PCD. Two missense variants, c.4112A>C (p. E1371A) and c.6559C>T (p. P2187S), in CFAP54 were detected in another unrelated patient. In this study, a minigene assay was conducted on the frameshift mutation showing a reduction in mRNA expression. In addition, a CFAP54 in-frame variant knock-in mouse model was established, which recapitulated the typical symptoms of PCD, including hydrocephalus, infertility, and mucus accumulation in nasal sinuses. Correspondingly, two missense variants were deleterious, with a dramatic reduction in mRNA abundance from bronchial tissue and sperm. The identification of PCD-causing variants of CFAP54 in two unrelated patients with PCD for the first time provides strong supportive evidence that CFAP54 is a new PCD-causing gene. This study further helps expand the disease-associated gene spectrum and improve genetic testing for PCD diagnosis in the future.


Assuntos
Síndrome de Kartagener , Camundongos , Animais , Humanos , Masculino , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Cílios/genética , Cílios/metabolismo , Sêmen , Testes Genéticos , RNA Mensageiro , Mutação
10.
Polymers (Basel) ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631391

RESUMO

Cisplatin (Cp), a chemotherapeutic agent, interacts with purines on tumor DNA, causing tumor cell apoptosis. However, cisplatin has the characteristics of non-specific distribution and lack of selectivity, resulting in systemic toxicity. Moreover, it cannot maintain the drug's high concentration in the tumor-weak acid environment. These flaws of cisplatin restrict its use in clinical applications. Therefore, a pH-responsive carbon nanotube-modified nano-drug delivery system (CNTs/Gel/Cp) was constructed in this study using gelatin (Gel)-modified carbon nanotubes (CNTs/Gel) loaded with cisplatin to release drugs precisely and slowly, preventing premature inactivation and maintaining an effective concentration. When MCp:MCNTs/Gel = 1:1, the drug reaches the highest loading rate and entrapment efficiency. To achieve the sustained-release effect, CNTs/Gel/Cp can release the medicine steadily for a long time in a pH environment of 6.0. Additionally, CNTs/Gel/Cp display antitumor properties comparable to cisplatin in a manner that varies with the dosage administered. These findings indicate that CNTs/Gel/Cp have an effective, sustained release of cisplatin and a good antitumor effect, providing a theoretical and experimental basis for the clinical application of modified carbon nanotubes (CNTs) as a new drug delivery system.

11.
Cell Rep ; 42(8): 112858, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494189

RESUMO

The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.


Assuntos
Canais de Potássio , Sódio , Humanos , Canais de Potássio/metabolismo , Microscopia Crioeletrônica , Canais de Potássio Ativados por Sódio , Sódio/metabolismo
12.
Diagnostics (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296822

RESUMO

Mycobacterium kansasii infections predominantly manifest in immunocompromised people and are primarily responsible for lung disease and systemic disseminated infection. Osteopathy is a rare consequence of M. kansasii infection. Here, we present imaging data from a 44-year-old immunocompetent Chinese woman diagnosed with multiple bone destruction, particularly of the spine, secondary to M. kansasii pulmonary disease, which is easily misdiagnosed. The patient underwent an emergency operation after experiencing unexpected incomplete paraplegia during hospitalization, indicating an aggravation of bone destruction. Preoperative sputum testing and next-generation sequencing of DNA and RNA of intraoperative samples confirmed the diagnosis of M. kansasii infection. Treatment with anti-tuberculosis therapy and the subsequent patient response supported our diagnosis. Given the rarity of osteopathy secondary to M. kansasii infection in immunocompetent individuals, our case offers some insight into this diagnosis.

13.
Semin Arthritis Rheum ; 62: 152231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348186

RESUMO

OBJECTIVES: To determine the prognostic factors of dermatomyositis with anti-melanoma differentiation-associated gene 5 (MDA5) antibody, a rare disease and often complicated by life-threatening, rapidly progressive interstitial lung disease. METHODS: Herein, we searched the Medline, Embase, and Cochrane Library databases and extracted studies published before August 23, 2022. Pooled analysis of hazard ratios (HRs) or odds ratios was used to identify prognostic factors for mortality among patients with anti-MDA5 antibody-positive dermatomyositis (MDA5+ DM). RESULTS: Twenty-nine cohorts with 2,645 patients were included in this meta-analysis. Factors related to poor prognosis included old age (HR 1.54, 95% confidence interval (CI) 1.41-1.69, p < 0.01), male sex (HR 2.07, 95% CI 1.34-3.18, p < 0.01), rapidly progressive interstitial lung disease (RP-ILD) (HR 9.34, 95% CI 6.39-13.6, p < 0.01), high levels of ferritin (HR 1.05, 95% CI 1.01-1.08, p < 0.01), C-reactive protein (CRP) (HR 1.12, 95% CI 1.06-1.19, p < 0.01), creatine kinase (HR 1.05, 95% CI 1.03-1.07, p < 0.01), and lactate dehydrogenase (LDH) (HR 1.27, 95% CI 1.12-1.45, p < 0.01), whereas oxygen index (HR 0.990, 95% CI 0.988-0.992, p < 0.01), partial pressure of oxygen (HR 0.933, 95% CI 0.906-0.961, p < 0.01), forced vital capacity (HR 0.962, 95% CI 0.928-0.998, p = 0.038), and lymphocyte count (HR 0.421, 95% CI 0.282-0.629, p < 0.01) were associated with better outcomes. CONCLUSIONS: Old age, male sex, hypoxemia, low forced vital capacity, lymphocytopenia, and high levels of ferritin, CRP, creatine kinase, and LDH are risk factors for mortality in patients with MDA5+ DM. However, a cautious interpretation of these results and further quality investigation are warranted.


Assuntos
Autoanticorpos , Dermatomiosite , Helicase IFIH1 Induzida por Interferon , Doenças Pulmonares Intersticiais , Humanos , Masculino , Dermatomiosite/complicações , Dermatomiosite/mortalidade , Progressão da Doença , Ferritinas , Helicase IFIH1 Induzida por Interferon/imunologia , Doenças Pulmonares Intersticiais/etiologia , Prognóstico , Estudos Retrospectivos , Fatores de Risco
14.
Nat Chem Biol ; 19(1): 81-90, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302896

RESUMO

The TRPV3 channel plays vital roles in skin physiology. Dysfunction of TRPV3 causes skin diseases, including Olmsted syndrome. However, the lack of potent and selective inhibitors impedes the validation of TRPV3 as a therapeutic target. In this study, we identified Trpvicin as a potent and subtype-selective inhibitor of TRPV3. Trpvicin exhibits pharmacological potential in the inhibition of itch and hair loss in mouse models. Cryogenic electron microscopy structures of TRPV3 and the pathogenic G573S mutant complexed with Trpvicin reveal detailed ligand-binding sites, suggesting that Trpvicin inhibits the TRPV3 channel by stabilizing it in a closed state. Our G573S mutant structures demonstrate that the mutation causes a dilated pore, generating constitutive opening activity. Trpvicin accesses additional binding sites inside the central cavity of the G573S mutant to remodel the channel symmetry and block the channel. Together, our results provide mechanistic insights into the inhibition of TRPV3 by Trpvicin and support TRPV3-related drug development.


Assuntos
Canais de Cátion TRPV , Camundongos , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/química , Mutação , Sítios de Ligação
15.
Front Immunol ; 14: 1309531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283343

RESUMO

With the widespread use of immune checkpoint inhibitors to treat various cancers, pulmonary toxicity has become a topic of increasing concern. Anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibodies are strongly associated with rapidly progressive interstitial lung disease (RP-ILD) in patients with clinically amyopathic dermatomyositis. However, anti-MDA5 antibody expression has not been reported in patients with immune-related adverse events. We present the case of a 74-year-old man with lung adenocarcinoma who developed RP-ILD after treatment with immune checkpoint inhibitors. Further investigation revealed multiple autoantibodies, including anti-MDA5 antibodies. He initially responded to systemic glucocorticoids, immunosuppressants, and tocilizumab but eventually died from worsening pneumomediastinum. This case is the first one to suggest that checkpoint inhibitor pneumonitis can present as RP-ILD with positive anti-MDA5 antibodies, which may be predictive of a poor prognosis.


Assuntos
Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonia , Idoso , Humanos , Masculino , Autoanticorpos , Inibidores de Checkpoint Imunológico/efeitos adversos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/complicações , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Pneumonia/etiologia
16.
Front Immunol ; 13: 969912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072590

RESUMO

A 56-year-old Chinese woman with previous disseminated mycobacterium avium complex infection and recurrent cervical abscesses from Burkholderia cepacia complex visited our hospital. She was diagnosed with adult-onset immunodeficiency (AOID) and tested positive for interferon-γ-neutralizing autoantibody. Ceftazidime was administered as the initial antimicrobial treatment, which was later combined with sulfamethoxazole-trimethoprim (SMZ-TMP). She developed drug rash with eosinophilia and systemic symptoms (DRESS) syndrome after SMZ-TMP administration and improved after withdrawal of the culprit antibiotic and systemic glucocorticoids treatment. Her cervical infection was eventually cured after combined therapy of long-term antibiotics and anti-IFN-γ autoantibodies (AIGA) titer-lowering treatments including glucocorticoids, rituximab, and plasmapheresis. This is the first case of DRESS syndrome in the setting of AIGA-induced AOID and is worthy of notice.


Assuntos
Síndrome de Hipersensibilidade a Medicamentos , Eosinofilia , Exantema , Síndromes de Imunodeficiência , Infecções por Mycobacterium não Tuberculosas , Adulto , Antibacterianos/uso terapêutico , Autoanticorpos , Síndrome de Hipersensibilidade a Medicamentos/complicações , Síndrome de Hipersensibilidade a Medicamentos/etiologia , Eosinofilia/induzido quimicamente , Eosinofilia/complicações , Eosinofilia/diagnóstico , Feminino , Humanos , Interferon gama , Pessoa de Meia-Idade , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos
17.
Nat Commun ; 13(1): 2713, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581266

RESUMO

Voltage-gated sodium (NaV) channels initiate action potentials. Fast inactivation of NaV channels, mediated by an Ile-Phe-Met motif, is crucial for preventing hyperexcitability and regulating firing frequency. Here we present cryo-electron microscopy structure of NaVEh from the coccolithophore Emiliania huxleyi, which reveals an unexpected molecular gating mechanism for NaV channel fast inactivation independent of the Ile-Phe-Met motif. An N-terminal helix of NaVEh plugs into the open activation gate and blocks it. The binding pose of the helix is stabilized by multiple electrostatic interactions. Deletion of the helix or mutations blocking the electrostatic interactions completely abolished the fast inactivation. These strong interactions enable rapid inactivation, but also delay recovery from fast inactivation, which is ~160-fold slower than human NaV channels. Together, our results provide mechanistic insights into fast inactivation of NaVEh that fundamentally differs from the conventional local allosteric inhibition, revealing both surprising structural diversity and functional conservation of ion channel inactivation.


Assuntos
Eucariotos , Canais de Sódio Disparados por Voltagem , Potenciais de Ação , Microscopia Crioeletrônica , Eucariotos/metabolismo , Humanos , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/genética
18.
Crit Care ; 25(1): 359, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649600

RESUMO

BACKGROUND: Examinations based on lung tissue specimen can play a significant role in the diagnosis for critically ill and intubated patients with lung infiltration. However, severe complications including tension pneumothorax and intrabronchial hemorrhage limit the application of needle biopsy. METHODS: A refined needle biopsy technique, named bronchus-blocked ultrasound-guided percutaneous transthoracic needle biopsy (BUS-PTNB), was performed on four intubated patients between August 2020 and April 2021. BUS-PTNB was done at bedside, following an EPUBNOW (evaluation, preparation, ultrasound location, bronchus blocking, needle biopsy, observation, and withdrawal of blocker) workflow. Parameters including procedure feasibility, sample acquisition, perioperative conditions, and complications were observed. Tissue specimens were sent to pathological examinations and microbial tests. RESULTS: Adequate specimens were successfully obtained from four patients. Diagnosis and treatment were correspondingly refined based on pathological and microbial tests. Intrabronchial hemorrhage occurred in patient 1 but was stopped by endobronchial blocker. Mild pneumothorax happened in patient 4 due to little air leakage, and closed thoracic drainage was placed. During the procedure, peripheral capillary hemoglobin oxygen saturation (SPO2), blood pressure, and heart rate of patient 4 fluctuated but recovered quickly. Vital signs were stable for patient 1-3. CONCLUSIONS: BUS-PTNB provides a promising, practical and feasible method in acquiring tissue specimen for critically ill patients under intratracheal intubation. It may facilitate the pathological diagnosis or other tissue-based tests for intubated patients and improve clinical outcomes.


Assuntos
Biópsia por Agulha , Brônquios , Biópsia Guiada por Imagem , Pneumopatias , Ultrassonografia de Intervenção , Biópsia por Agulha/métodos , Brônquios/diagnóstico por imagem , Brônquios/patologia , Estado Terminal , Humanos , Intubação Intratraqueal , Pneumopatias/patologia , Pneumopatias/terapia
19.
Shock ; 56(5): 773-781, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34238903

RESUMO

ABSTRACT: The incidence and mortality of acute respiratory distress syndrome (ARDS) are high, but the relevant mechanism for this disorder remains unclear. Autophagy plays an important role in the development of ARDS. The mitochondrial outer membrane protein FUNDC1 is involved in hypoxia-mediated mitochondrial autophagy, which may contribute to ARDS development. This study explored whether FUNDC1 regulates autophagy by inhibiting ROS-NLRP3 signaling to avoid apoptosis in the lung in a lipopolysaccharide-induced mouse model. In this study, FUNDC1 knockout mice were constructed, and a lipopolysaccharide-induced mouse model was generated. HE staining of pathological sections from the lung, wet/dry lung measurements, myeloperoxidase concentration/neutrophil counts in BALF and survival time of mice were examined to determine the effect of modeling. The release of cytokines (TNF-α, IL-1ß, IL-6, and IL-10) in response to LPS in the BALF and plasma was assessed using ELISA. The effects of oxidative stress (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase) in lung tissue in response to LPS were detected by biochemical analysis. Oxidative stress damage was validated by iNOS staining, and apoptosis was assessed by TUNEL staining after LPS. Finally, the expression of autophagy-associated proteins and inflammasome-associated proteins in lung tissue after LPS intervention was analyzed by western blot. We found that wild-type control, FUNDC1 knockout control, lipopolysaccharide-induced wild-type, and FUNDC1 knockout mouse models were used to investigate whether FUNDC1-mediated autophagy is involved in lung injury and its possible molecular mechanisms. Compared with the normal control group, lung tissue FUNDC1 and LC3 II increased and p62/SQSTM1 decreased after LPS intervention, and increased ROS levels led to a decrease in corresponding antioxidant enzymes along with an increased inflammatory response and apoptosis. Levels of autophagy in lipopolysaccharide-induced mice deficient in FUNDC1 were significantly decreased, but the expression of ROS and inflammatory factors in lung tissue was more severe than in lipopolysaccharide-induced wild-type mice, and the survival rate was significantly decreased. Western blot analysis showed that autophagy was significantly inhibited in the FUNDC1 KO+LPS group, and there was a significant increase in NLRP3, caspase-1, IL-1ß, and ASC compared with the lipopolysaccharide-induced wild-type group. In summary, lipopolysaccharide-induced wild-type mice exhibit ROS-dependent activation of autophagy, and knocking out FUNDC1 promotes inflammasome activation and exacerbates lung injury.


Assuntos
Apoptose , Autofagia/fisiologia , Lesão Pulmonar/etiologia , Proteínas de Membrana/fisiologia , Proteínas Mitocondriais/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Espécies Reativas de Oxigênio , Animais , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
20.
Commun Biol ; 4(1): 817, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188171

RESUMO

Multi-resistant bacteria are a major threat in modern medicine. The gram-negative coccobacillus Acinetobacter baumannii currently leads the WHO list of pathogens in critical need for new therapeutic development. The maintenance of lipid asymmetry (MLA) protein complex is one of the core machineries that transport lipids from/to the outer membrane in gram-negative bacteria. It also contributes to broad-range antibiotic resistance in several pathogens, most prominently in A. baumannii. Nonetheless, the molecular details of its role in lipid transport has remained largely elusive. Here, we report the cryo-EM maps of the core MLA complex, MlaBDEF, from the pathogen A. baumannii, in the apo-, ATP- and ADP-bound states, revealing multiple lipid binding sites in the cytosolic and periplasmic side of the complex. Molecular dynamics simulations suggest their potential trajectory across the membrane. Collectively with the recently-reported structures of the E. coli orthologue, this data also allows us to propose a molecular mechanism of lipid transport by the MLA system.


Assuntos
Acinetobacter baumannii/química , Lipídeos de Membrana/química , Trifosfato de Adenosina/química , Sítios de Ligação , Membrana Celular/química , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA