Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904871

RESUMO

Deoxynivalenol (DON) in raw and processed grain poses significant risks to human and animal health. In this study, the feasibility of classifying DON levels in different genetic lines of barley kernels was evaluated using hyperspectral imaging (HSI) (382-1030 nm) in tandem with an optimized convolutional neural network (CNN). Machine learning methods including logistic regression, support vector machine, stochastic gradient descent, K nearest neighbors, random forest, and CNN were respectively used to develop the classification models. Spectral preprocessing methods including wavelet transform and max-min normalization helped to enhance the performance of different models. A simplified CNN model showed better performance than other machine learning models. Competitive adaptive reweighted sampling (CARS) in combination with successive projections algorithm (SPA) was applied to select the best set of characteristic wavelengths. Based on seven wavelengths selected, the optimized CARS-SPA-CNN model distinguished barley grains with low levels of DON (<5 mg/kg) from those with higher levels (5 mg/kg < DON ≤ 14 mg/kg) with an accuracy of 89.41%. The lower levels of DON class I (0.19 mg/kg ≤ DON ≤ 1.25 mg/kg) and class II (1.25 mg/kg < DON ≤ 5 mg/kg) were successfully distinguished based on the optimized CNN model, yielding a precision of 89.81%. The results suggest that HSI in tandem with CNN has great potential for discrimination of DON levels of barley kernels.


Assuntos
Hordeum , Humanos , Imageamento Hiperespectral , Redes Neurais de Computação , Algoritmos , Máquina de Vetores de Suporte
2.
Biosensors (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35200337

RESUMO

Fluorescence spectroscopy, color imaging and multispectral imaging (MSI) have emerged as effective analytical methods for the non-destructive detection of quality attributes of various white meat products such as fish, shrimp, chicken, duck and goose. Based on machine learning and convolutional neural network, these techniques can not only be used to determine the freshness and category of white meat through imaging and analysis, but can also be used to detect various harmful substances in meat products to prevent stale and spoiled meat from entering the market and causing harm to consumer health and even the ecosystem. The development of quality inspection systems based on such techniques to measure and classify white meat quality parameters will help improve the productivity and economic efficiency of the meat industry, as well as the health of consumers. Herein, a comprehensive review and discussion of the literature on fluorescence spectroscopy, color imaging and MSI is presented. The principles of these three techniques, the quality analysis models selected and the research results of non-destructive determinations of white meat quality over the last decade or so are analyzed and summarized. The review is conducted in this highly practical research field in order to provide information for future research directions. The conclusions detail how these efficient and convenient imaging and analytical techniques can be used for non-destructive quality evaluation of white meat in the laboratory and in industry.


Assuntos
Ecossistema , Carne , Animais , Galinhas , Peixes , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA