Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 182: 114145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519175

RESUMO

Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Cálcio , Laticínios/microbiologia , Biofilmes , Bactérias/genética , Polissacarídeos , RNA
2.
Int J Food Microbiol ; 416: 110660, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460236

RESUMO

The spoilage bacterium Bacillus licheniformis has been identified as a quick and strong biofilm former in the dairy industry. In our previous study, intra-species variation in bacterial biofilms has been observed in diverse B. licheniformis strains from different genetic backgrounds; however, the mechanisms driving the observed heterogeneity of biofilms remain to be determined. In this study, the genotype-phenotype evaluation of the heterogeneity in biofilm formation of four B. licheniformis strains were examined. The heterogeneity in biofilm phenotype was accessed in aspects of bacterial growth and motility, cell viability, biofilm matrix production, and biofilm architectures. The underlying mechanisms of the intra-species variability in biofilms were also explored by whole genome resequencing (WGR). Results from bacterial motility tests showed a diverse motility among the strains, but there was no clear correlation between bacterial motility and biofilm formation. The cell viability results showed a different number of live cells in biofilms at the intra-species level. Analysis of chemical components in biofilm matrix demonstrated the great intra-species differences regarding extracellular matrix composition, and a negative correlation between biofilm formation on stainless steel and the protein: carbohydrate ratio in biofilm matrix was observed. Confocal laser scanning microscopy analysis also revealed the intra-species variability by showing great differences in general properties of B. licheniformis biofilms. WGR results identified important pathways involved in biofilm formation, such as two-component systems, quorum sensing, starch and sucrose metabolism, ABC transporters, glyoxylate and dicarboxylate metabolism, purine metabolism, and a phosphotransferase system. Overall, the above results emphasize the necessity of exploring the intra-species variation in biofilms, and would provide in-depth knowledge for designing efficient biofilm control strategies in the dairy industry.


Assuntos
Bacillus licheniformis , Laticínios/microbiologia , Biofilmes , Bactérias , Genótipo
3.
Sci Total Environ ; 899: 165695, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487904

RESUMO

Exposure to sub-inhibitory concentrations (sub-MICs) of antibiotics could induce the biofilm formation of microorganisms, but its underlying mechanisms still remain elusive. In the present work, biofilm formation by Salmonella Typhimurium M3 was increased when in the presence of tetracycline at sub-MIC, and the highest induction was observed with tetracycline at 1/8 MIC. The integration of RNA-sequencing and untargeted metabolomics was applied in order to further decipher the potential mechanisms for this observation. In total, 439 genes and 144 metabolites of S. Typhimurium M3 were significantly expressed after its exposure to 1/8 MIC of tetracycline. In addition, the co-expression analysis revealed that 6 genes and 8 metabolites play a key role in response to 1/8 MIC of tetracycline. The differential genes and metabolites were represented in 12 KEGG pathways, including five pathways of amino acid metabolism (beta-alanine metabolism, tryptophan metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glutathione metabolism), three lipid metabolism pathways (biosynthesis of unsaturated fatty acids, fatty acid degradation, and fatty acid biosynthesis), two nucleotide metabolism pathways (purine metabolism, and pyrimidine metabolism), pantothenate and CoA biosynthesis, and ABC transporters. Metabolites (anthranilate, indole, and putrescine) from amino acid metabolism may act as signaling molecules to promote the biofilm formation of S. Typhimurium M3. The results of this work highlight the importance of low antimicrobial concentrations on foodborne pathogens of environmental origin.


Assuntos
Multiômica , Salmonella typhimurium , Triptofano , Biofilmes , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Ácidos Graxos/metabolismo
4.
Opt Express ; 31(11): 17437-17449, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381478

RESUMO

In order to solve the difficulty of traditional phase measuring deflectometry (PMD) in considering precision and speed, an orthogonal encoding PMD method based on deep learning is presented in this paper. We demonstrate for, what we believe to be, the first time that deep learning techniques can be combined with dynamic-PMD and can be used to reconstruct high-precision 3D shapes of specular surfaces from single-frame distorted orthogonal fringe patterns, enabling high-quality dynamic measurement of specular objects. The experimental results prove that the phase and shape information measured by the proposed method has high accuracy, almost reaching the results obtained by the ten-step phase-shifting method. And the proposed method also has excellent performance in dynamic experiments, which is of great significance to the development of optical measurement and fabrication areas.

5.
Food Res Int ; 162(Pt B): 112060, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461319

RESUMO

In this study, twenty-two baby foods including cereal-based products and powdered infant formula (PIF) obtained from local markets were comprehensively investigated for their bacterial contamination using culture-dependent and high-throughput sequence (HTS) methods. In addition, the genetic diversity and biofilm-forming capacity of the most abundant species were analyzed using random amplified polymorphic DNA (RAPD) and crystal violet staining assay, respectively. Results showed that 170 mesophilic isolates collected from 22 samples were clustered into 15 genera and 41 species. Bacillus (77.65%) was the most prevalent genus, followed by Paenibacillus (7.06%), Alkalibacillus (3.53%), and Lysinibacillus (2.35%). Bacillus licheniformis (49.41%) proved to be the most dominant species in infant foods, and a high genetic diversity with six different RAPD profiles was observed. A total of 87.5% of B. licheniformis isolates were identified as strong biofilm formers, and heterogeneous biofilm-forming ability was observed among the isolates sharing the same RAPD pattern. HTS analysis revealed an 18-fold higher biodiversity at the genus level, and a significantly different bacterial community of infant foods was dominated by Lactococcus, Streptococcus, and Bifidobacterium. Foodborne pathogens including Bacillus cereus, and potentially pathogenic microorganisms such as Acinetobacter baumannii, were identified in infant foods by HTS. The current results could expand the crucial information about bacterial contamination of baby foods.


Assuntos
Povo Asiático , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Técnica de Amplificação ao Acaso de DNA Polimórfico , Fórmulas Infantis , China
6.
Opt Express ; 30(15): 26504-26518, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236841

RESUMO

Phase Measuring Deflectometry (PMD) and Structured-Light Modulation Analysis Technique (SMAT) perform effectively in shape and defect measurements of specular objects, but the difficulty of giving consideration to accuracy and speed has also restricted the further development and application of them. Inspired by recent successes of deep learning techniques for computational imaging, we demonstrate for the first time that deep learning techniques can be used to recover high-precision modulation distributions of specular surfaces from a single-frame fringe pattern under SMAT, enabling fast and high-quality defect detection of specular surfaces. This method can also be applied to recover higher-precision phase distributions of specular surfaces from a single-frame fringe pattern under PMD, so as to realize the 3D shape measurement. In this paper, we combine depthwise separable convolution, residual structure and U-Net to build an improved U-Net network. The experimental results prove that the method has excellent performance in the phase and modulation retrieval of specular surfaces, which almost reach the accuracy of the results obtained by ten-step phase-shifting method.

7.
Curr Med Sci ; 39(4): 526-533, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31346986

RESUMO

Activation of macrophages is a key event for the pathogenesis of various inflammatory diseases. Notch signaling pathway recently has been found to be a critical pathway in the activation of proinflammatory macrophages. Salidroside (Sal), one of main bioactive components in Rhodiola crenulata (Hook. F. et Thoms) H. ohba, reportedly possesses anti-inflammatory activity and ameliorates inflammation in alcohol-induced hepatic injury. However, whether Sal regulates the activation of proinflammatory macrophages through Notch signaling pathway remains unknown. The present study investigated the effects of Sal on macrophage activation and its possible mechanisms by using both alcohol and lipopolysaccharide (LPS) to mimic the microenvironment of alcoholic liver. Detection of THP-1-derived macrophages exhibited that Sal could significantly decrease the expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß) and IL-6 in the macrophages at both mRNA and protein levels. Furthermore, Sal significantly suppressed NF-κB activation via Notch-Hes signaling pathway in a dose-dependent manner. Moreover, in the microenvironment of alcoholic liver, the expression of Notch-dependent pyruvate dehydrogenase phosphatase 1 (PDP1) was elevated, and that of M1 gene expression [inducible NO synthase (NOS2)] was up-regulated. These changes could all be effectively ameliorated by Sal. The aforementioned findings demonstrated that Sal could inhibit LPS-ethanol-induced activation of proinflammatory macrophages via Notch signaling pathway.


Assuntos
Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fenóis/farmacologia , Rhodiola/química , Citocinas/genética , Etanol/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Fígado/lesões , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/genética , Proteína Fosfatase 2C/genética , RNA Mensageiro/genética , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
8.
Opt Express ; 27(2): 1208-1216, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696190

RESUMO

We demonstrate the compression of noise-like pulses in an Yb-doped fiber master-oscillator power-amplifier (MOPA). The seed source of the MOPA is an NPR mode locked fiber laser delivering 5.94-ps dissipative soliton pulses with a repetition rate of 37.48 MHz. After amplification in the Yb-doped fiber amplifier, stable noise-like pulses with maximum power of 5 W are obtained. Subsequently a grating pair is used to tailor the spectrum and compensate the dispersion of the amplified noise-like pulses. The pedestal of de-convolution autocorrelation trace is compressed from 6.5 ps to 920 fs. To the best of our knowledge, this is the first time that the pedestal of a noise-like pulse is compressed to femtosecond region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA