Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phytomedicine ; 128: 155365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552436

RESUMO

BACKGROUND: Ferroptosis, a form of regulated cell death (RCD) that relies on excessive reactive oxygen species (ROS) generation, Fe2+accumulation, abnormal lipid metabolism and is involved in various organ ischemia/reperfusion (I/R) injury, expecially in myocardium. Mitochondria are the powerhouses of eukaryotic cells and essential in regulating multiple RCD. However, the links between mitochondria and ferroptosis are still poorly understood. Salidroside (Sal), a natural phenylpropanoid glycoside isolated from Rhodiola rosea, has mult-bioactivities. However, the effects and mechanism in alleviating ferroptosis caused by myocardial I/R injury remains unclear. PURPOSE: This study aimed to investigate whether pretreated with Sal could protect the myocardium against I/R damage and the underlying mechanisms. In particular, the relationship between Sal pretreatment, AMPKα2 activity, mitochondria and ROS generation was explored. STUDY DESIGN AND METHODS: Firstly, A/R or I/R injury models were employed in H9c2 cells and Sprague-Dawley rats. And then the anti-ferroptotic effects and mechanism of Sal pretreatment was detected using multi-relevant indexes in H9c2 cells. Further, how does Sal pretreatment in AMPKα2 phosphorylation was explored. Finally, these results were validated by I/R injury in rats. RESULTS: Similar to Ferrostatin-1 (a ferroptosis inhibitor) and MitoTEMPO, a mitochondrial free radical scavenger, Sal pretreatment effectively alleviated Fe2+ accumulation, redox disequilibrium and maintained mitochondrial energy production and function in I/R-induced myocardial injury, as demonstrated using multifunctional, enzymatic, and morphological indices. However, these effects were abolished by downregulation of AMPKα2 using an adenovirus, both in vivo and in vitro. Moreover, the results also provided a non-canonical mechanism that, under mild mitochondrial ROS generation, Sal pretreatment upregulated and phosphorylated AMPKα2, which enhanced mitochondrial complex I activity to activate innate adaptive responses and increase cellular tolerance to A/R injury. CONCLUSION: Overall, our work highlighted mitochondria are of great impotance in myocardial I/R-induced ferroptosis and demonstrated that Sal pretreatment activated AMPKα2 against I/R injury, indicating that Sal could become a candidate phytochemical for the treatment of myocardial I/R injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Ferroptose , Glucosídeos , Traumatismo por Reperfusão Miocárdica , Fenóis , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Rhodiola , Ferroptose/efeitos dos fármacos , Fenóis/farmacologia , Animais , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Masculino , Rhodiola/química , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos
2.
Int Immunopharmacol ; 115: 109703, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724953

RESUMO

The kidney is susceptible to lipopolysaccharide (LPS)-induced damage with sepsis, and renal dysfunction is a leading cause of mortality in patients with sepsis. However, the renoprotective effects of ferulic acid (FA) during sepsis and the underlying mechanism remain unclear. This study explored these renoprotective effects using NRK-52E cells and mice with LPS-induced renal damage. The results showed that after LPS challenge, NRK-52E cell viability decreased, whereas lactate dehydrogenase, caspase-3 activity, apoptosis, the release of the inflammatory cytokines, and reactive oxygen species generation increased. Further, the activities of endogenous enzymatic and non-enzymatic antioxidant systems, and energy metabolism were inhibited, mitochondrial membrane potential was lost, mitochondrial permeability transition pores opened, renal blood flow and excretory functions were reduced, and the morphology and ultrastructure of renal tissue were seriously damaged in mice exposed to LPS. FA pretreatment upregulated AMP-activated protein kinase (AMPK) α1 expression and phosphorylation and significantly reversed the aforementioned functional, enzymological, and morphological indexes in vivo and in vitro. However, these renoprotective effects of FA were attenuated by compound C, an AMPK inhibitor. In conclusion, FA pretreatment can upregulate AMPKα1 expression and phosphorylation, inhibit inflammatory cytokine release and oxidative stress, improve mitochondrial function and energy supply, alleviate apoptosis, and ultimately protect renal tissue against LPS damage.


Assuntos
Proteínas Quinases Ativadas por AMP , Sepse , Animais , Camundongos , Lipopolissacarídeos , Antioxidantes , Citocinas
3.
Eur J Pharmacol ; 954: 175865, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406848

RESUMO

Excessive autophagy induced by reperfusion is one of the causes of severe myocardial injury. Tanshinone IIA (TSN) protects the myocardium against ischemia/reperfusion (I/R) injury. The mechanism by which the inhibition of excessive autophagy contributes to the myocardial protection by TSN is unclear. The protective effects and mechanisms of TSN were studied in H9c2 cells and rats after anoxia/reoxygenation (A/R)-or I/R-induced myocardial injury. The results showed that after the injury, cell viability decreased, lactate dehydrogenase and caspase 3 activity and apoptosis increased, and autophagy was excessively activated. Further, redox imbalance and energy stress, mitochondrial dysfunction, reduced myocardial function, increased infarct area, and severely damaged morphology were observed in rats. TSN increased 14-3-3η expression and regulated Akt/Beclin1 pathway, inhibited excessive autophagy, and significantly reversed the functional, enzymological and morphological indexes in vivo and in vitro. However, the protective effects of TSN were mimicked by 3-methyladenine (an autophagy inhibitor) and were attenuated by pAD/14-3-3η-shRNA, API-2 (an Akt inhibitor), and rapamycin (an autophagy activator). In conclusion, TSN could increase 14-3-3η expression and regulate Akt/Beclin1 pathway, inhibit excessive autophagy, maintain the mitochondrial function, improve energy supply and redox equilibrium, alleviate apoptosis, and ultimately protect myocardium against I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Beclina-1/metabolismo , Miócitos Cardíacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Apoptose , Autofagia , Isquemia/metabolismo
4.
Mol Cell Biochem ; 478(7): 1475-1486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36385689

RESUMO

The relation between ischemia and heart failure is well demonstrated, and several studies suggested that realizing the physiological role of autophagy will be of great importance. Luteoloside (Lut) is one of the main components of Lonicera japonica flos and exhibits antioxidant, anti-inflammatory, and cardioprotective properties. To determine if Lut pretreatment enhanced autophagy by 14-3-3η expression and the AMPKα-mTOR/ULK1 pathway and protected the neonatal rat cardiomyocytes (NRCMs) against anoxia damage, NRCMs were treated using 20 µM Lut for 36 h, and the anoxia damage model was established using NRCMs. The indexes reflecting the condition of NRCMs, oxidative stress level, and mitochondrial function were evaluated. In addition, the expression and phosphorylation of 14-3-3η and AMPKα/mTOR/ULK1, and autophagy markers (LC3II, P62) and the abundance of autophagy lysosomes were detected. Results revealed that Lut pretreatment alleviated anoxia- induced damage in NRCMs, that is, Lut pretreatment could increase cell viability, decrease LDH activity and apoptosis, suppressed ROS generation and oxidative stress, restored intracellular ATP levels, stabilized MMP levels, and inhibited mPTP opening. Furthermore, Lut pretreatment could enhance autophagy via upregulating 14-3-3η, LC3II expression and increasing p-AMPKα/AMPKα and p-ULK1/ULK1 level, whereas P62 expression and p-mTOR/mTOR level decreased; the fluorescence intensity of autolysosomes also increased. However, in the NRCMs treated with pAD/14-3-3η RNAi or incubated with 3-MA (an autophagy inhibitor), the abovementioned effects of Lut pretreatment were reduced. Taken together, Lut pretreatment could enhance autophagy by upregulating 14-3-3η expression to influence the AMPKα-mTOR/ ULK1 pathway against anoxia-induced damage in NRCMs.


Assuntos
Miócitos Cardíacos , Serina-Treonina Quinases TOR , Ratos , Animais , Miócitos Cardíacos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Hipóxia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo
5.
Biomed Pharmacother ; 153: 113403, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076529

RESUMO

Doxorubicin (Dox)-induced cardiotoxicity (DIC) seriously threatens the health of related patients. Studies have confirmed that 14-3-3γ and protein kinase C epsilon (PKCε) are the endogenous protective proteins. Puerarin (Pue) is a bioactive ingredient isolated from the root of Pueraria lobata. It possesses many pharmacological properties, which have been widely used in treating and adjuvant therapy of cardiovascular diseases. In the study, we intended to explore the effects and mechanism of Pue pretreatment to protect the myocardium against DIC injury. Adult mice and H9c2 cells were pretreated with Pue, and the injury model was made with Dox. Results showed that Pue pretreatment alleviated DIC injury, as revealed by increased cell viability, decreased LDH activity and apoptosis, inhibited excess oxidative stress, maintained mitochondrial function and energy metabolism, and improved myocardial function. Furthermore, Pue pretreatment upregulated 14-3-3γ expression, interacted with PKCε, phosphorylated and impelled migration to mitochondria, activated adaptive autophagy, and protected the myocardium. However, pAD/14-3-3γ-shRNA or εV1-2 (a PKCε activity inhibitor) or 3-methyladenine (an autophagy inhibitor) could weaken the above effects of Pue pretreatment. Together, Pue pretreatment could activate adaptive autophagy by the 14-3-3γ/PKCε pathway and protect the myocardium against DIC injury.


Assuntos
Cardiotoxicidade , Proteína Quinase C-épsilon , Animais , Apoptose , Autofagia , Cardiotoxicidade/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/toxicidade , Isoflavonas , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos , Estresse Oxidativo , Proteína Quinase C-épsilon/metabolismo , Ratos
6.
Oxid Med Cell Longev ; 2022: 3737137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092159

RESUMO

Acute renal ischemia/reperfusion (I/R) injury often occurs during kidney transplantation and other kidney surgeries, and the molecular mechanism involves oxidative stress. We hypothesized that ginsenoside Rg1 (Rg1), a saponin derived from ginseng, would protect the renal tissue against acute renal I/R injury by upregulating 5' adenosine monophosphate-activated protein kinase α1 (AMPKα1) expression and inhibiting oxidative stress. The models of acute anoxia/reoxygenation (A/R) damage in normal rat kidney epithelial cell lines (NRK-52E) and acute renal I/R injury in mice were constructed. The results revealed that pretreatment with 25 µM Rg1 significantly increased NRK-52E viability, decreased lactate dehydrogenase (LDH) activity and apoptosis, suppressed reactive oxygen species generation and oxidative stress, stabilized mitochondrial membrane potential and reduced mitochondria permeability transition pore openness, decreased adenosine monophosphate/adenosine triphosphate ratio, and upregulated the expression of AMPKα1, cytochrome b-c1 complex subunit 2, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8, and B-cell lymphoma 2, while downregulating BCL2-associated X protein expression. The effects of Rg1 pretreatment were similar to those of pAD/Flag-AMPKα1. After acute renal I/R injury, serum creatinine, blood urea nitrogen, LDH activity, and oxidative stress in renal tissue significantly increased. Rg1 pretreatment upregulated AMPKα1 expression, which protects against acute renal I/R injury by maintaining renal function homeostasis, inhibiting oxidative stress, and reducing apoptosis. Compound C, a specific inhibitor of AMPK, reversed the effects of Rg1. In summary, Rg1 pretreatment upregulated AMPKα1 expression, inhibited oxidative stress, maintained mitochondrial function, improved energy metabolism, reduced apoptosis, and ultimately protected renal tissue against acute renal I/R injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Monofosfato de Adenosina , Animais , Ginsenosídeos , Isquemia , Rim/patologia , Rim/fisiologia , Camundongos , Ratos , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia
7.
Int Immunopharmacol ; 108: 108905, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35729836

RESUMO

Studies have confirmed that the heart is the main target organ of lipopolysaccharide (LPS) attacks, and 14-3-3γ and protein kinase C epsilon (PKCε) are the endogenous protective proteins. Puerarin (Pue) is the major bioactive ingredient isolated from the root of Pueraria lobata. It possesses many pharmacological properties, which has been widely used in the treatment and adjuvant therapy of cardio- and cerebrovascular diseases and cancer, etc. The study intended to explore the effects and mechanism of Pue pretreatment to protect myocardium against LPS injury. Adult mice and primary cultured neonatal rat cardiomyocytes were pretreated with Pue, and the injury model was made with LPS. Results showed that Pue pretreatment alleviated LPS-induced injury, as demonstrated by increased cell viability, decreased LDH activity and apoptosis, inhibited excess oxidative stress and the inflammatory cytokine release, and maintained mitochondrial function. Furthermore, Pue pretreatment upregulated 14-3-3γ expression, interacted with PKCε, which was phosphorylated and impelled migration to mitochondria, and then activated adaptive autophagy and protected the myocardium. However, pAD/14-3-3γ-shRNA or 3-MA (an autophagy inhibitor) could weaken the above effects of Pue pretreatment. Together, Pue pretreatment could activate adaptive autophagy by the 14-3-3γ/PKCε pathway and protect the myocardium against LPS injury.


Assuntos
Traumatismos Cardíacos , Isoflavonas , Animais , Apoptose , Autofagia , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos , Miócitos Cardíacos/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C-épsilon/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA