Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 105, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026359

RESUMO

BACKGROUND: Rapeseed (Brassica napus L.) is one of the most important oil crops and a wildly cultivated horticultural crop. The petals of B. napus serve to protect the reproductive organs and attract pollinators and tourists. Understanding the genetic basis of petal morphology regulation is necessary for B. napus breeding. RESULTS: In the present study, the quantitative trait locus (QTL) analysis for six B. napus petal morphology parameters in a double haploid (DH) population was conducted across six microenvironments. A total of 243 QTLs and five QTL hotspots were observed, including 232 novel QTLs and three novel QTL hotspots. The spatiotemporal transcriptomic analysis of the diversiform petals was also conducted, which indicated that the expression of plant hormone metabolic and cytoskeletal binding protein genes was variant among diversiform petals. CONCLUSIONS: The integration of QTL and RNA-seq analysis revealed that plant hormones (including cytokinin, auxin, and gibberellin) and cytoskeleton were key regulators of the petal morphology. Subsequently, 61 high-confidence candidate genes of petal morphology regulation were identified, including Bn.SAUR10, Bn.ARF18, Bn.KIR1, Bn.NGA2, Bn.PRF1, and Bn.VLN4. The current study provided novel QTLs and candidate genes for further breeding B. napus varieties with diversiform petals.

2.
Transl Oncol ; 45: 101962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677015

RESUMO

Bladder cancer (BC) has a high incidence and is prone to recurrence. In most instances, the low 5-year survival rate of advanced BC patients results from postoperative recurrence and drug resistance. Long noncoding RNAs (lncRNAs) can participate in numerous biological functions by regulating the expression of genes to affect tumorigenesis. Our previous work had demonstrated that a novel lncRNA, LINC02321, was associated with BC prognosis. In this study, A high expression of LINC02321 was found in BC tissues, which was associated with poor prognosis in patients. LINC02321 promoted both proliferation and G1-G0 progression in BC cells, while also inhibited sensitivity to cisplatin. Mechanistically, LINC02321 can bind to RUVBL2 and regulate the expression levels of RUVBL2 protein by affecting its half-life. RUVBL2 is involved in the DNA damage response. The potential of DNA damage repair pathways to exert chemosensitization has been demonstrated in vivo. The rescue experiment demonstrated that RUVBL2 overexpression can markedly abolish the decreased cell proliferation and the increased sensitivity of BC cells to cisplatin caused by LINC02321 knockdown. The results indicate that LINC02321 functions as an oncogene in BC, and may serve as a novel potential target for controlling BC progression and addressing cisplatin resistance in BC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA