Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359483

RESUMO

BACKGROUND: Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE: This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS: Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 µM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS: The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and ß-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION: In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.


Assuntos
Fumar Cigarros , Cílios , Flavanonas , Animais , Ratos , Ratos Sprague-Dawley , Cílios/metabolismo , Interleucina-17/metabolismo , Células Epiteliais
2.
Phytomedicine ; 124: 155256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181527

RESUMO

BACKGROUND: Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE: We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS: Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS: Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION: Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.


Assuntos
Fumar Cigarros , Vesículas Extracelulares , Ferroptose , Flavanonas , Lesão Pulmonar , MicroRNAs , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Fumar Cigarros/efeitos adversos , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Ferro/metabolismo
3.
Life Sci ; 311(Pt A): 121127, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36306867

RESUMO

With the wide application of silver nanoparticles (AgNPs), their potential damage to human health needs to be investigated. Lung is one of the main target organs after inhalation of AgNPs. Naringenin has been reported to have anti-inflammatory and anti-oxidative properties. This study aims to evaluate the protective effects of naringenin against AgNPs-induced lung injury and determine the underlying mechanism. In in vivo experiments, AgNPs were intratracheally instilled into ICR mice (l mg/kg) to establish a lung injury model. These mice were then treated with naringenin by oral gavage (25, 50, 100 mg/kg) for three days. Naringenin treatment decreased the levels of white blood cells, neutrophils, and lymphocytes in the blood, ameliorated lung injury, suppressed the release of pro-inflammatory cytokines, normalized ferroptotic markers and prevented oxidative stress with elevating Nrf2 and HO-1 protein expressions in lung. In in vitro experiments, BEAS-2B cells were firstly treated with AgNPs (320 µg/mL) and then naringenin (25, 50, and 100 µM), respectively. Naringenin attenuated AgNPs-induced oxidative stress and inflammatory response. Moreover, naringenin attenuated AgNPs-induced apoptosis with modulated low BAX, CytC, cleaved Caspase9, cleaved Caspase3 but high Bcl2. Furthermore, naringenin effectively decreased ferroptotic markers and increased the protein expressions of Nrf2 and HO-1, as well as increased the nuclear translocation of Nrf2. Importantly, the anti-apoptotic and anti-ferroptotic effects of naringenin in BEAS-2B cells were found to be at least partially Nrf2-dependent. These results indicated that naringenin exerted anti-inflammation, anti-apoptosis, and anti-ferroptosis effects and protected against AgNPs-induced lung injury at least partly via activating Nrf2/HO-1 signaling pathway.


Assuntos
Lesão Pulmonar , Nanopartículas Metálicas , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Prata/farmacologia
4.
Front Immunol ; 13: 930476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924248

RESUMO

Extracellular vesicles (EVs)-mediated epithelium-macrophage crosstalk has been proved to maintain lung homeostasis in cigarette smoke-induced lung diseases such as chronic obstructive pulmonary disease (COPD). In our previous study, we found that EVs derived from cigarette smoke extract (CSE) treated BEAS-2B promoted M1 macrophage polarization, which probably accelerated the development of inflammatory responses. Naringenin has been proved to suppress M1 macrophage polarization, but whether naringenin regulates macrophage polarization mediated by EVs has not been reported. In this study, we firstly found that EVs derived from naringenin and CSE co-treated BEAS-2B significantly inhibited the expression of CD86 and CD80 and the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, inducible nitric oxide synthase (iNOS), and IL-12 in macrophage induced by EVs derived from CSE-treated BEAS-2B. Further research revealed that naringenin downregulated BEAS-2B-derived EVs miR-21-3p which targeted phosphatase and tensin homolog deleted on chromosome ten/protein kinase B (PTEN/AKT) cascade in macrophages and then suppressed M1 macrophage polarization. Subsequent proteomics suggested that naringenin decreased BEAS-2B-derived EVs poly ADP-ribose polymerase (PARP)1 expression thereby suppressing M1 macrophage polarization probably. Our study provides novel pharmacological references for the mechanism of naringenin in the treatment of cigarette smoke-induced lung inflammatory diseases.


Assuntos
Fumar Cigarros , Vesículas Extracelulares , Fumar Cigarros/efeitos adversos , Flavanonas , Ativação de Macrófagos , Macrófagos/metabolismo , Nicotiana
5.
Front Immunol ; 13: 847132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432311

RESUMO

Sleep disorders were associated with oral health. Inflammation has especially been thought to be a key factor in linking oral diseases and sleep deficiency. However, how chronic sleep deprivation (CSD) affects oral homeostasis, particularly oral inflammation and oral microbiota, is still unknown. This study aimed to uncover the systematic relationship between oral homeostasis and CSD in rats. The metabolomics in serum, proteomics in the tongue tissues, and microbiome analysis in the oral cavity in CSD rats were performed. Multi-omics data integration analysis was performed to uncover the systematic relationship between oral homeostasis and CSD through the weighted correlation network analysis. We found that CSD could lead to oral inflammation in rats. CSD significantly increased systemic inflammation by enhancing the serum levels of IL-1ß, IL-6 and inhibiting the serum level of IL-10. Serum levels of adrenocorticotropin hormone, corticosterone, and triiodothyronine were increased in CSD rats, and the steroid hormone biosynthesis pathway was also found to be involved in the perturbation resulting from CSD, together suggesting the activation of the hypothalamic-pituitary-adrenocortical and hypothalamic-pituitary-thyroid axis. CSD led to changes of oral microbiota composition, and g_Acinetobacter, Candidatus Chryseobacterium massiliae, and g_Moraxella were significantly correlated with multiple proteins in bacterial invasion of epithelial cells pathway, which may partially responsible for oral inflammation resulting from CSD. The changes of proteomic profiling expression caused by CSD in tongue tissues were mainly enriched in neurodegenerative diseases pathways and immune/inflammation-related pathways. Multi-omics analysis indicated that the inflammatory response-related modules were significantly correlated with the neurodegenerative disease-related module suggesting a possible link between neurodegenerative diseases and oral inflammation. Together, CSD induced oral inflammation and subtle changes on oral microbiota. Our study is helpful to further understand the role that oral homeostasis plays in the process by which CSD affects human health and disease.


Assuntos
Doenças Neurodegenerativas , Privação do Sono , Animais , Corticosterona , Homeostase , Inflamação/complicações , Proteômica , Ratos , Privação do Sono/complicações
6.
Biochem Biophys Res Commun ; 572: 157-163, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34365140

RESUMO

Inhalation of cigarette smoke induces airway and parenchyma inflammation that predisposes smokers to multiple lung diseases such as COPD. Macrophage polarization, an important specifying feature of inflammation, is involved in the progression of pulmonary inflammation. Exosomes and their loaded miRNAs provide a medium for cross-talk between alveolar macrophages and lung epithelial cells to maintain lung homeostasis. In this study, we treated Beas-2B with CSE to speculate the effects of Beas-2B-derived exosomes on macrophage polarization and performed exosomal miRNAomics analysis to explore the mechanism. We found that CSE-treated Beas-2B-derived exosomes could not only increase the percentages of CD86+, CD80+ CD163+, and CD206+ cells but also induce the secretion of TNF-α, IL-6, iNOS, IL-10, Arg-1, and TGF-ß, indicating both M1 and M2 polarization of RAW264.7 macrophages were promoting. We performed miRNAomics analysis to identify 27 differentially expressed exosomal miRNAs such as miR-29a-3p and miR-1307-5p. Next, we obtained 14942 target genes of these miRNAs such as SCN1A and PLEKHA1 through the prediction of TargetScan and miRanda. We utilized KEGG enrichment analysis for these targets to identify potential pathways such as the PI3K-Akt signaling pathway and the MAPK signaling pathway on the regulation of macrophage polarization. We further found that miR-21-3p or miR-27b-3p may play critical roles in the promotion of CSE-Exo on macrophage polarization by miRNA interference. Collectively, this study provided novel information for diagnostic and therapeutic tactics of cigarette smoke-related lung diseases.


Assuntos
Fumar Cigarros/efeitos adversos , Macrófagos/efeitos dos fármacos , MicroRNAs/análise , Produtos do Tabaco/efeitos adversos , Animais , Linhagem Celular , Exossomos/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7
7.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669020

RESUMO

Naringenin, a natural flavonoid widely found in citrus fruits, has been reported to possess anti-oxidant, anti-inflammatory, and hepatoprotective properties as a natural dietary supplement. However, the regulatory mechanism of naringenin in human liver remains unclear. In the present study, messenger RNA sequencing (mRNA-seq), microRNA sequencing (miRNA-seq), and real-time qPCR were used to distinguish the expression differences between control and naringenin-treated HepaRG cells. We obtained 1037 differentially expressed mRNAs and 234 miRNAs. According to the target prediction and integration analysis in silico, we found 20 potential miRNA-mRNA pairs involved in liver metabolism. This study is the first to provide a perspective of miRNA-mRNA interactions in the regulation of naringenin via an integrated analysis of mRNA-seq and miRNA-seq in HepaRG cells, which further characterizes the nutraceutical value of naringenin as a food additive.


Assuntos
Flavanonas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ontologia Genética , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética
8.
AAPS PharmSciTech ; 22(1): 20, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389225

RESUMO

The aim of present study was to evaluate the feasibility of a naringenin-hydroxypropyl-ß-cyclodextrin (naringenin-HPßCD) inhalation solution for pulmonary delivery. Naringenin, a flavanone derived from citrus fruits, has been proven to exhibit excellent peripheral antitussive effect. To address the limitation of its poor oral bioavailability and low local concentration in the lung, a naringenin-HPßCD inhalation solution was prepared for pulmonary delivery. The aerosolization performance of formulation was evaluated by next generation impactor (NGI). Both dose-dependent and time-dependent antitussive effects of naringenin-HPßCD inhalation solution on acute cough induced by citric acid in guinea pigs were investigated. In vitro toxicity of naringenin-HPßCD inhalation solution in pulmonary Calu-3 cells was evaluated by MTS assay, and in vivo local toxicity investigation was achieved by assessing bronchoalveolar lavage (BALF) and lung histology after a 7-day inhalation treatment in guinea pigs. Fine particle fraction (FPF) of the formulation was determined as 53.09%. After inhalation treatment of 15 min, naringenin-HPßCD inhalation solution within the studied range of 0.2-3.6 mg/kg could dose-dependently reduce the cough frequency with the antitussive rate of 29.42-39.42%. Naringenin-HPßCD inhalation solution in concentration range of 100-400 µM did not decrease cell viability of Calu-3 cells, and the maximum effective dose (3.6 mg/kg) was non-toxic during the short-term inhalation treatment for guinea pigs. In conclusion, naringenin-HPßCD inhalation solution was capable for nebulization and could provide rapid response with reduced dose for the treatment of cough.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Aerossóis/química , Antitussígenos/administração & dosagem , Flavanonas/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/química , Administração por Inalação , Animais , Disponibilidade Biológica , Flavanonas/química , Cobaias , Pulmão , beta-Ciclodextrinas/administração & dosagem
9.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066647

RESUMO

Naringenin is found mainly in citrus fruits, and is thought to be beneficial in the prevention and control of lung diseases. This study aims to investigate the mechanisms of naringenin against the damage in the lung caused by cigarette smoke. A system bioinformatic approach was proposed to predict the mechanisms of naringenin for protecting lung health. Then, we validated this prediction in BEAS-2B cells treated with cigarette smoke extract (CSE). System bioinformatic analysis indicated that naringenin exhibits protective effects on lung through the inhibition of inflammation and suppression of oxidative stress based on a multi-pathways network, mainly including oxidative stress pathway, Nrf2 pathway, Lung fibrosis pathway, IL-3 signaling pathway, and Aryl hydrocarbon receptor pathway. The in vitro results showed that naringenin significantly attenuated CSE-induced up-regulation of IL-8 and TNF-α. CSE stimulation increased the mRNA expressions of Nrf2, HO-1, and NQO1; the levels of total protein and nuclear protein of Nrf2; and the activity of SOD on days 2 and 4; but decreased these indexes on day 6. Naringenin can balance the antioxidant system by regulating Nrf2 and its downstream genes, preliminarily validating that Nrf2 pathway is involved in the protection offered by naringenin against cigarette smoke-induced damage to the lung. It suggests that dietary naringenin shows possible potential use in the management of lung health.


Assuntos
Fumar Cigarros/efeitos adversos , Flavanonas/farmacologia , Pulmão/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Heme Oxigenase-1/genética , Humanos , Interleucina-8/metabolismo , Pulmão/metabolismo , Pulmão/patologia , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Front Pharmacol ; 11: 824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694994

RESUMO

Oral ulcers are the most prevalent oral mucosal diseases globally, and no specific treatment schemes are currently available due to the complexity of oral ulcer diseases. Sleep deprivation increases the risk of a deterioration in oral health. Kouyanqing Granule (KYQG) has been used for decades in China to treat inflammatory diseases of the mouth and throat associated with the hyperactivity of fire due to yin deficiency syndrome. However, the mechanisms underlying the effects of KYQG in the treatment of oral ulcers are still unclear. The aims of this study were to investigate whether KYQG treatment could attenuate the symptoms of oral ulcers worsened by sleep deprivation and identify the involved metabolic pathways. First, we conducted chemical profiling of KYQG via UPLC-MS analysis. We then combined pharmacological and metabolomics approaches in a phenol-induced rat model of oral ulcers worsened by sleep deprivation. A total of 79 compounds were initially identified. Our observations showed that KYQG treatment induced a significantly higher healing rate in oral ulcers worsened by sleep deprivation. KYQG significantly reduced the levels of 5-HT and GABA in serum, and only decreased the 5-HT level in brain tissue after phenol injury followed by sleep deprivation. Moreover, KYQG administration significantly suppressed systemic inflammation by inhibiting TNF-α, IL-1ß, IL-6, IL-18, and MCP-1. Immunohistochemical analysis further revealed that KYQG inhibited IL-6 expression in buccal mucosa tissues. KYQG treatment also significantly decreased the serum levels of ACTH, CORT, IgM, and 8-OHdG. Serum metabolomics analysis showed that a total of 30 metabolites showed significant differential abundances under KYQG intervention, while metabolic pathway analysis suggested that the altered metabolites were associated with the dysregulation of eight metabolic pathways. Taken together, our results indicated that KYQG attenuates the symptoms of oral ulcers worsened by sleep deprivation probably through the regulation of the neuroimmunoendocrine system, oxidative stress levels, and tryptophan metabolism. This study also provides a novel approach for addressing the increased health risks resulting from sleep deficiency using an herbal medicine formula.

11.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012911

RESUMO

Naringenin, a flavonoid compound which exists abundantly in Citrus fruits, is proven to possess excellent antitussive and expectorant effects. However, the clinical applications of naringenin are restricted by its poor solubility and low local concentration by oral administration. The aim of the present study is to prepare a naringenin-hydroxypropyl-ß-cyclodextrin (naringenin-HPßCD) inclusion as an inhalation solution for pulmonary delivery. The naringenin-HPßCD inclusion was characterized by phase solubility study, XRD, differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1HNMR), and two-dimensional rotating frame Overhauser effect spectroscopy (2D ROESY). The in vitro permeability of the inclusion was evaluated on Calu-3 cells and the pharmacokinetic profile of pulmonary delivery was investigated in Sprague-Dawley (SD) rats. Based on the linear model of phase solubility study, the relationship between naringenin and HPßCD was identified as AL type with a 1:1 stoichiometry. XRD, DSC, and NMR studies indicated that the entire naringenin molecule is encapsulated into the cavity of HPßCD. HPßCD could increase the concentration of naringenin in the epithelium-lining fluid (ELF) of Calu-3 cells and act as a sustained release system for naringenin. The pharmacokinetic profile of naringenin-HPßCD inclusion showed rapid response and higher local concentration by pulmonary delivery. In conclusion, pulmonary delivery of naringenin-HPßCD inclusion is a promising formulation strategy, which could provide a new possibility for the clinical application of naringenin.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Flavanonas/administração & dosagem , Pulmão/química , Administração Oral , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular , Feminino , Flavanonas/química , Flavanonas/farmacocinética , Humanos , Masculino , Nebulizadores e Vaporizadores , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Sprague-Dawley , Solubilidade , Difração de Raios X
12.
Phytomedicine ; 63: 153004, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31301536

RESUMO

BACKGROUND: PM2.5 is closely related to the incidence and mortality of respiratory diseases. Diesel particulate matter (DPM) is the main component of particulate air pollution and an important source of PM2.5. HYPOTHESIS/PURPOSE: This study mainly explored the effect of DPM on airway surface liquid (ASL) secretion and the regulation of naringin in this process, to evaluate therapeutic potentials of naringin for the treatment of abnormal secretion of the respiratory tract caused by PM2.5. METHODS: The concentration of lysozyme was measured by Lysozyme Assay Kit. Total protein content was determined by the BCA Protein Assay Kit. The concentration of cAMP and MUC5AC, expressions of CFTR, AQP1, and AQP5 proteins were measured by ELISA. Expressions of CFTR, AQP1 and AQP5 mRNA were determined by qPCR. Amount of CFTR on the cell membrane was determined by immunofluorescence. RESULTS: The in vitro and in vivo studies had indicated that DPM could inhibit ASL secretion and increased the viscosity of the liquid. Naringin had the functions to attenuate DPM-induced injury, reduce liquid viscosity by reducing MUC5AC and total protein secretion, increase DPM-induced CFTR, AQP1, and AQP5 mRNA and protein expression, positively regulate apical CFTR insertion and promote CFTR activation by increasing intracellular cAMP. CONCLUSION: These results demonstrated that naringin had regulating effects on the DPM-induced abnormal secretion of the respiratory tract.


Assuntos
Poluentes Atmosféricos/toxicidade , Flavanonas/farmacologia , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Mucina-5AC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA