Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655901

RESUMO

BACKGROUND: Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in the food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS: In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), new C-N bonds were formed in Fourier-transform infrared (FTIR) spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of circular dichroism (CD) spectroscopy also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION: This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. © 2024 Society of Chemical Industry.

2.
Food Funct ; 14(7): 2948-2968, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36876591

RESUMO

Inulin, a soluble dietary fiber, is widely found in more than 36 000 plant species as a reserve polysaccharide. The primary sources of inulin, include Jerusalem artichoke, chicory, onion, garlic, barley, and dahlia, among which Jerusalem artichoke tubers and chicory roots are often used as raw materials for inulin production in the food industry. It is universally acknowledged that inulin as a prebiotic has an outstanding effect on the regulation of intestinal microbiota via stimulating the growth of beneficial bacteria. In addition, inulin also exhibits excellent health benefits in regulating lipid metabolism, weight loss, lowering blood sugar, inhibiting the expression of inflammatory factors, reducing the risk of colon cancer, enhancing mineral absorption, improving constipation, and relieving depression. In this review paper, we attempt to present an exhaustive overview of the function and health benefits of inulin.


Assuntos
Helianthus , Inulina , Inulina/farmacologia , Inulina/metabolismo , Plantas/metabolismo , Tubérculos/metabolismo
3.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903232

RESUMO

Herein, we present the synthesis and electrochemical performance of a comb-like polycaprolactone-based gel electrolyte from acrylate terminated polycaprolactone oligomers and liquid electrolyte for high-voltage lithium metal batteries. The ionic conductivity of this gel electrolyte at room temperature was measured to be 8.8 × 10-3 S cm-1, which is an exceptionally high value that is more than sufficient for the stable cycling of solid-state lithium metal batteries. The Li+ transference number was detected to be 0.45, facilitating the prohibition of concentration gradients and polarization, thereby prohibiting lithium dendrite formation. In addition, the gel electrolyte exhibits high oxidation voltage up to 5.0 V vs. Li+/Li and perfect compatibility against metallic lithium electrodes. The superior electrochemical properties provide the LiFePO4-based solid-state lithium metal batteries with excellent cycling stability, displaying a high initial discharge capacity of 141 mAh g-1 and an extraordinary capacity retention exceeding 74% of its initial specific capacity after being cycled for 280 cycles at 0.5C at room temperature. This paper presents a simple and effective in situ preparation process yielding an excellent gel electrolyte for high-performance lithium metal battery applications.

4.
Gels ; 8(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35323306

RESUMO

Owing to the potential of sodium as an alternative to lithium as charge carrier, increasing attention has been focused on the development of high-performance electrolytes for Na batteries in recent years. In this regard, gel-type electrolytes, which combine the outstanding ionic conductivity of liquid electrolytes and the safety of solid electrolytes, demonstrate immense application prospects. However, most gel electrolytes not only need a number of specific techniques for molding, but also typically suffer from breakage, leading to a short service life and severe safety issues. In this study, a supramolecular thixotropic ionogel electrolyte is proposed to address these problems. This thixotropic electrolyte is formed by the supramolecular self-assembly of D-gluconic acetal-based gelator (B8) in an ionic liquid solution of a Na salt, which exhibits moldability, a high ionic conductivity, and a rapid self-healing property. The ionogel electrolyte is chemically stable to Na and exhibits a good Na+ transference number. In addition, the self-assembly mechanism of B8 and thixotropic mechanism of ionogel are investigated. The safe, low-cost and multifunctional ionogel electrolyte developed herein supports the development of future high-performance Na batteries.

5.
Chem Biodivers ; 17(2): e1900631, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31967396

RESUMO

A mixture of taxols was prepared from 10-deacetyl-7-xylosyltaxanes by three-step reactions: redox, acetylation, and deacetylation. The mixture was separated by column chromatography on silica gel to afford Taxol, Taxol B (Cephalomannine) and Taxol C. The mixture of Taxol B and Taxol C was converted to Docetaxel by Schwartz's reagent. The structures of Taxol and Docetaxel were characterized by HPLC, 1 H-NMR, 13 C-NMR and MS. This synthetic process has expanded the source of biomass for the chemical semi-synthesis of Taxol and Docetaxel, reduced the production costs, and increased the biomass resource of taxanes.


Assuntos
Docetaxel/química , Paclitaxel/química , Taxoides/química , Acetilação , Cromatografia Líquida de Alta Pressão , Docetaxel/síntese química , Espectroscopia de Ressonância Magnética , Oxirredução , Paclitaxel/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA