Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Food Res Int ; 176: 113775, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163700

RESUMO

Lutein exhibits excellent functional activity making it useful in many fields. Nevertheless, its use is limited by its physical and chemical instability. Here, collagen and Lycium barbarum L. leaf flavonoids (LBLF) were used as emulsifiers, their structures were characterized, the properties of the complexes were evaluated, and their stabilizing effects on lutein emulsions were explored. According to the results, the encapsulation rate of the complex of collagen-LBLF was (68.67 ± 1.43) % and the drug loading was (6.92 ± 0.13) %. Collagen compounded LBLF with a changed structure and morphology, resulting in improved antioxidant capacity, better foaming and emulsification, and reduced hydrophobicity. In addition, the thiobarbituric acid value of collagen-LBLF stabilized lutein emulsion (0.0012 ± 0.00011) mg/kg was significantly lower than that of collagen stabilized lutein emulsion (0.0021 ± 0.00016)  mg/kg (P < 0.05), indicating that the composite stabilized lutein emulsion obtained higher stability. LBLF contributed a high free radical scavenging effect and inhibited lutein degradation during storage. During simulated digestion, collagen-LBLF effectively stabilized the emulsion and protected lutein from destruction, made it release more slowly, and benefited the bio-accessibility of lutein during the next utilization step. Based on the present study, improved storage and digestion stabilities of lutein wereachievedby the utilization of collagen-LBLF complex, which provides a new method for the preparation and application of composite functional emulsifiers.


Assuntos
Luteína , Lycium , Emulsões/química , Luteína/química , Emulsificantes , Antioxidantes
2.
J Proteomics ; 290: 105033, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37879564

RESUMO

In order to better understand the mechanism of betaine accumulation in Lycium barbarum L. (LBL), we used iTRAQ (Isotope relative and absolute quantitative labeling) proteomics to screen and identify differentially abundant proteins (DAPs) at five stages (S1-young fruit stage, S2-green fruit stage, S3-early yellowing stage, S4-late yellowing stage, S5-ripening stage). A total of 1799 DAPs and 171 betaine-related DAPs were identified, and phosphatidylethanolamine N-methyltransferase (NMT), choline monooxygenase (CMO), and betaine aldehyde dehydrogenase (BADH) were found to be the key enzymes related to betaine metabolism. These proteins are mainly involved in carbohydrates, amino acids and their derivatives, fatty acids, carboxylic acids, photosynthesis and photoprotection, isoquinoline alkaloid biosynthesis, peroxisomes, and glycine, serine, and threonine metabolism. Three of the key enzymes were also up- and down-regulated to different degrees at the mRNA level. The study provide new insights into the of mechanism of betaine accumulation in LBL. SIGNIFICANCE: Betaine, a class of naturally occurring, water-soluble alkaloids, has been found to be widespread in animals, higher plants, and microbes. In addition to being an osmotic agent, betaine has biological functions such as hepatoprotection, neuroprotection, and antioxidant activity. Betaine metabolism (synthesis and catabolism) is complexly regulated by developmental and environmental signals throughout the life cycle of plant fruit maturation. As a betaine-accumulating plant, little has been reported about the regulatory mechanisms of betaine metabolism during the growth and development of Lycium barbarum L. (LBL) fruit. Therefore, this study used iTRAQ quantitative proteomics technology to investigate the abundance changes of betaine-related proteins in LBL fruit, screen and analyze the differential abundance proteins related to betaine metabolism, and provide theoretical references for the in-depth study of the mechanism of betaine metabolism in LBL fruit.


Assuntos
Betaína , Lycium , Animais , Betaína/metabolismo , Lycium/química , Lycium/metabolismo , Proteômica , Carboidratos , Ácidos Carboxílicos/metabolismo
3.
Ultrason Sonochem ; 101: 106696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988957

RESUMO

To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Antioxidantes/química , Lycium/química , Lycium/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
4.
RSC Adv ; 13(42): 29152-29162, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800130

RESUMO

Topical administration of curcumin (CUR), a natural polyphenol with potent anti-inflammation and analgesic activities, provides a potential approach for local skin diseases. However, the drug delivery efficiency is highly limited by skin barriers and poor bioavailability of CUR. Herein, we propose hydrogel containing CUR-encapsulated dipeptide-1-modified nanostructured lipid carriers (CUR-DP-NLCs gel) to enhance topical drug delivery, and improve the topical therapeutic effect. The prepared CUR-DP-NLCs were characterized and were suitably dispersed into the Pluronic F127 hydrogel for topical application. The optimized CUR-DP-NLCs had a particle size of 152.6 ± 3.47 nm, a zeta potential of -33.1 ± 1.46 mV, an entrapment efficiency of 99.83 ± 0.14%, and a spherical morphology. X-ray diffraction (XRD) studies confirmed that CUR was successfully entrapped by the NLCs in an amorphous form. CUR-DP-NLCs gel exhibited sustained release over 48 h and significantly increased the skin retention of CUR. In vitro skin retention of CUR with CUR-DP-NLCs gel was 2.14 and 2.85 times higher than that of unmodified NLCs gel and free CUR, respectively. Fluorescence microscopy imaging revealed the formed nanoparticles accumulated in the hair follicles with prolonged retention time to form a drug reservoir. The hematoxylin-eosin staining showed that CUR-DP-NLCs gel could change the microstructure of skin layers and disturb the skin barriers. After topical administration to mice, CUR-DP-NLCs gel showed better analgesic and anti-inflammatory activities with no potentially hazardous skin irritation. These results concluded that CUR-DP-NLCs gel is a promising strategy to increase topical drug delivery of CUR in the treatment of local skin diseases.

5.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570682

RESUMO

The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.


Assuntos
Cisteína , Podofilotoxina , Animais , Suínos , Administração Cutânea , Podofilotoxina/farmacologia , Pele , Epiderme , Tamanho da Partícula , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
6.
Ultrason Sonochem ; 98: 106509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406542

RESUMO

In this study, the slit dual-frequency ultrasound-assisted pulping of fresh Lycium barbarum fruit was optimized to improve the dissolution of polysaccharides. The microscopic mechanism of polysaccharide dissolution was explored through establishing polysaccharides dissolution kinetics model and visualizing the multi-physical fields during ultrasonic process, and an in situ real-time monitoring model was established by the relationship between the chemical value and spectral information collected by near-infrared spectroscopy. The results showed that, under optimal conditions, treatment with ultrasound (28-33 kHz, 250 W, 30 min) not only significantly promoted the dissolution rate of polysaccharides in Lycium barbarum pulp (LBPPs, increased by 43.64 %, p < 0.01), reduced its molecular weight, but also improved the arabinose molar ratio, the uniformity of polysaccharide particles, and the antioxidant activity of LBPPs. Correlation analysis indicated that ultrasonic treatment is closely related to LBPPs content, particle size and scavenging capacity against superoxide anion radicals (ptotal sugar content < 0.01, pparticle size < 0.05 and psuperoxide anion scavenging < 0.05). Moreover, the in situ real-time monitoring model for the pulping process could quantitatively predict LBPPs dissolution rate and its superoxide anion radical scavenging capacity with good calibration and prediction performance (Rc = 0.9841, RMSECV = 0.0873, Rp = 0.9772, RMSEP = 0.0530; Rc = 0.9874, RMSECV = 0.1246, Rp = 0.9868, RMSEP = 0.0665). These results indicated that slit dual-frequency ultrasound has great potential in improving the quality of Lycium barbarum pulp, which may provide theoretical support for the industrial development of intelligent systems for polysaccharides preparation.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Lycium/química , Superóxidos , Frutas/química , Solubilidade , Polissacarídeos/química , Medicamentos de Ervas Chinesas/análise
7.
Gels ; 9(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504466

RESUMO

Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 µg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.

8.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444287

RESUMO

Fresh goji (Lycium barbarum L.) berries were treated with high-concentration (50% and 90%) oxygen shocking for 30 min and then stored at 0 ± 0.5 °C for 30 d. Decay, aerobic plate count, firmness, weight loss, total soluble solid (TSS), and titratable acidity (TA) were evaluated during storage. A total of 90% O2 shocking more effectively reduced decay and maintained the weight loss and firmness of goji berries. Subsequently, changes in fungi communities were analyzed using high-throughput sequencing (HTS) in the 90% O2-shocking and control groups. The results showed that 90% O2 shocking retained the richness and diversity of fungi communities and the microbiome was related to the quality properties of the fruit. Thus, we inferred that high oxygen shocking inhibited the development of natural decay and maintained the satisfying quality of goji berries by affecting the fungi community composition, which reduced the growth of pathogenic fungi and harmful saprotrophic fungi in the genera, such as Filobasidium sp., Alternaria sp., and Cladosporium sp. We provide a new insight into the disease development and quality changes during the storage of postharvest goji berries.

9.
J Sci Food Agric ; 103(14): 7050-7060, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37340801

RESUMO

BACKGROUND: In goji berries (Lycium barbarum L.), the cell wall properties and ripening environment affect fruit quality and their economic benefits. However, the mechanism underlying the cell wall remains to be fully elucidated. RESULTS: The results showed that total sugar content was higher in Qinghai berries (13.87%, P < 0.01), whereas cellulose content peaked in Zhongning berries (28%, P < 0.05). Arabinose, galactose, and galacturonic acid were the principal components of the cell wall polysaccharides in goji berries. Among them, the content of galactose in Zhongning was significantly the highest (P < 0.05). Interestingly, we found that highly expressed ß-glucosidase and lowly expressed endoglucanase led to cellulose accumulation by RNA-sequencing analysis. The expression analysis results suggested that pectate lyase and pectinesterase enzymes could be major factors related to higher galactose and galacturonic acid contents in Zhongning compared to in Qinghai and Gansu. The starch and sucrose metabolism pathway, pentose and glucuronate interconversions pathway, and galactose metabolism pathway played a significant role in cell wall polysaccharide synthesis and metabolism. CONCLUSION: In the present study, we aimed to provide some insights into the cell wall on polysaccharide composition, structural features, and gene analysis in goji berries from Zhongning, Qinghai, and Gansu in China. These results might help to clarify the molecular function of the major genes in the cell wall polysaccharides of goji berries and provide a solid foundation for further study. © 2023 Society of Chemical Industry.

10.
Plant Physiol Biochem ; 199: 107722, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150012

RESUMO

Goji berries (Lycium barbarum L.) were rich in flavonoids, showing high nutritional and medicinal value. However, a thorough evaluation and comparison of the flavonoids in goji berries from various regions and the possible biological regulation pathways with differences are scanty. Here, we investigated the flavonoid metabolites and gene expression levels of goji berries from three major production areas in China using transcriptomics sequencing and metabolomics. The total flavonoid content and total polyphenol content of goji berry in Ningxia (57.87 µg/g and 183.41 µg/g, respectively) were higher than in Qinghai (50.77 µg/g and 156.81 µg/g) and Gansu (47.86 µg/g and 111.17 µg/g). We identified the 105 differentially accumulated flavonoids (DAFs) and 1858 differentially expressed genes (DEGs) from the goji berries in three habitats. Interestingly, gossypetin-3-O-rutinoside and isorhamnetin were significantly expressed between Ningxia and Qinghai berries. The chalcone isomerase (CHI), chalcone synthase (CHS), and flavonol synthase (FLS) genes also played key roles in the regulation of flavonoid synthesis. In addition, MYB1 positively regulated the expression of quercetin-3-O-glucoside, quercetin-7-O-glucoside and isohyperoside. As a result, we speculated that CHI, CHS, FLS genes, and related transcription factors jointly controlled the variation of flavone accumulation in goji berries. These findings may provide a new perspective for understanding the accumulation and molecular mechanisms of goji flavonoids.


Assuntos
Lycium , Lycium/genética , Transcriptoma/genética , Flavonoides/metabolismo , Polifenóis/metabolismo , Metaboloma , Frutas/genética
11.
Ecotoxicol Environ Saf ; 259: 115015, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201423

RESUMO

BACKGROUND: Previous studies revealed associations between air-pollutant exposure and in vitro fertilization (IVF) outcomes. However, modification effects of air pollution on IVF outcomes by meteorological conditions remain elusive. METHODS: This multicenter retrospective cohort study included 15,217 women from five northern Chinese cities during 2015-2020. Daily average concentrations of air pollutants (PM2.5, PM10, O3, NO2, SO2, and CO) and meteorological factors (temperature, relative humidity, wind speed, and sunshine duration) during different exposure windows were calculated as individual approximate exposure. Generalized estimating equations models and stratified analyses were conducted to assess the associations of air pollution and meteorological conditions with IVF outcomes and estimate potential interactions. RESULTS: Positive associations of wind speed and sunshine duration with pregnancy outcomes were detected. In addition, we observed that embryo transfer in spring and summer had a higher likelihood to achieve a live birth compared with winter. Exposure to PM2.5, SO2, and O3 was adversely correlated with pregnancy outcomes in fresh IVF cycles, and the associations were modified by air temperature, relative humidity, and wind speed. The inverse associations of PM2.5 and SO2 exposure with biochemical pregnancy were stronger at lower temperatures and humidity. Negative associations of PM2.5 with clinical pregnancy were only significant at lower temperatures and wind speeds. Moreover, the effects of O3 on live birth were enhanced by higher wind speed. CONCLUSIONS: Our results suggested that the associations between air-pollutant exposure and IVF outcomes were modified by meteorological conditions, especially temperature and wind speed. Women undergoing IVF treatment should be advised to reduce outdoor time when the air quality was poor, particularly at lower temperatures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , China , Fertilização in vitro , Conceitos Meteorológicos , Material Particulado/efeitos adversos , Material Particulado/análise
12.
Front Plant Sci ; 14: 1168216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251765

RESUMO

Vegetable oil is an important part of the human diet and has multiple industrial uses. The rapid increase in vegetable oil consumption has necessitated the development of viable methods for optimizing the oil content of plants. The key genes regulating the biosynthesis of maize grain oil remain mostly uncharacterized. In this study, by analyzing oil contents and performing bulked segregant RNA sequencing and mapping analyses, we determined that su1 and sh2-R mediate the shrinkage of ultra-high-oil maize grains and contribute to the increase in the grain oil content. Functional kompetitive allele-specific PCR (KASP) markers developed for su1 and sh2-R detected su1su1Sh2Sh2, Su1Su1sh2sh2, and su1su1sh2sh2 mutants among 183 sweet maize inbred lines. An RNA sequencing (RNA-seq) analysis indicated that genes differentially expressed between two conventional sweet maize lines and two ultra-high-oil maize lines were significantly associated with linoleic acid metabolism, cyanoamino acid metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, and nitrogen metabolism. A bulk segregant analysis and sequencing (BSA-seq) analysis identified another 88 genomic intervals related to grain oil content, 16 of which overlapped previously reported maize grain oil-related QTLs. The combined analysis of BSA-seq and RNA-seq data enabled the identification of candidate genes. The KASP markers for GRMZM2G176998 (putative WD40-like beta propeller repeat family protein), GRMZM2G021339 (homeobox-transcription factor 115), and GRMZM2G167438 (3-ketoacyl-CoA synthase) were significantly related to maize grain oil content. Another candidate gene, GRMZM2G099802 (GDSL-like lipase/acylhydrolase), catalyzes the final step of the triacylglycerol synthesis pathway and was expressed at significantly higher levels in the two ultra-high-oil maize lines than in the two conventional sweet maize lines. These novel findings will help clarify the genetic basis of the increased oil production in ultra-high-oil maize lines with grain oil contents exceeding 20%. The KASP markers developed in this study may be useful for breeding new high-oil sweet maize varieties.

13.
Front Plant Sci ; 14: 1149760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008484

RESUMO

Introduction: Parameterizing the process of trees from the comfort zone to mortality during progressive drought is important for, but is not well represented in, vegetation models, given the lack of appropriate indices to gauge the response of trees to droughts. The objective of this study was to determine reliable and readily available tree drought stressindices and the thresholds at which droughts activate important physiological responses. Methods: We analyzed the changes in the transpiration (T), stomatal conductance, xylem conductance, and leaf health status due to a decrease in soil water availability (SWA), predawn xylem water potential (ψpd), and midday xylem water potential (ψmd) in Robinia pseudoacacia seedlings during progressive drought. Results: The results showed that ψmd was a better indicator of drought stress than SWA and ψpd, because ψmd was more closely related to the physiological response (defoliation and xylem embolization) during severe drought and could be measured more conveniently. We derived the following five stress levels from the observed responses to decreasing ψmd: comfort zone (ψmd > -0.9 MPa), wherein transpiration and stomatal conductance are not limited by SWA; moderate drought stress (-0.9 to -1.75 MPa), wherein transpiration and stomatal conductance are limited by drought; high drought stress (-1.75 to -2.59 MPa), wherein transpiration decreases significantly (T< 10%) and stomata closes completely; severe drought stress (-2.59 to -4.02 MPa), wherein transpiration ceases (T< 0.1%) and leaf shedding orwilting is > 50%; and extreme drought stress (< -4.02 MPa), leading to tree mortality due to xylem hydraulic failure. Discussion: To our knowledge, our scheme is the first to outline the quantitative thresholds for the downregulation of physiological processes in R. pseudoacacia during drought, therefore, can be used to synthesize valuable information for process-based vegetation models.

14.
J Funct Biomater ; 14(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37103293

RESUMO

Mesenchymal stem cells (MSCs) have recently been widely used to treat osteoarthritis (OA). Our prior research shows that tropoelastin (TE) increases MSC activity and protects knee cartilage from OA-related degradation. The underlying mechanism might be that TE regulates the paracrine of MSCs. Exosomes (Exos), the paracrine secretion of MSCs, have been found to protect chondrocytes, reduce inflammation, and preserve the cartilage matrix. In this study, we used Exos derived from TE-pretreated adipose-derived stem cells (ADSCs) (TE-ExoADSCs) as an injection medium, and compared it with Exos derived from unpretreated ADSCs (ExoADSCs). We found that TE-ExoADSCs could effectively enhance the matrix synthesis of chondrocytes in vitro. Moreover, TE pretreatment increased the ability of ADSCs to secrete Exos. In addition, compared with ExoADSCs, TE-ExoADSCs exhibited therapeutic effects in the anterior cruciate ligament transection (ACLT)-induced OA model. Further, we observed that TE altered the microRNA expression in ExoADSCs and identified one differentially upregulated microRNA: miR-451-5p. In conclusion, TE-ExoADSCs helped maintain the chondrocyte phenotype in vitro, and promoted cartilage repair in vivo. These therapeutic effects might be related with the altered expression of miR-451-5p in the ExoADSCs. Thus, the intra-articular delivery of Exos derived from ADSCs with TE pretreatment could be a new approach to treat OA.

15.
J Clin Med ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769467

RESUMO

BACKGROUND: Ovarian sensitivity index (OSI) is an accurate index to reflect the ovarian sensitivity to exogenous gonadotropins in in vitro fertilization (IVF). How insulin resistance (IR) affects OSI and pregnancy outcomes during IVF remains unclear. METHODS: This was a large retrospective, cohort study. A total of 2055 women with polycystic ovary syndrome (PCOS) undergoing the first fresh IVF cycle were enrolled. They were grouped into terciles based on the homeostasis model assessment of insulin resistance (HOMA-IR) values as control, medium and IR group for comparison. Multivariate regression analysis was also conducted. RESULTS: HOMA-IR had a significantly negative impact on OSI (adjusted ß = -0.24; 95% CI, -0.35 to -0.13), especially in lean patients with an adjusted ß of -0.33 (95% CI, -0.51 to -0.16). The interaction analysis revealed an interactive association between HOMA-IR and body mass index (BMI) (p = 0.017). IR was related to an increased early miscarriage risk independently with an odds ratio (OR) of 2.21 (95% CI, 1.13 to 4.33), without significant impact on pregnancy and live birth rate. CONCLUSION: IR decreased the ovarian response in PCOS patients undergoing IVF, especially in the lean subgroup. IR may result in a higher risk of early miscarriage, but did not impair pregnancy and live birth rate.

16.
J Sci Food Agric ; 103(4): 1925-1934, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36258283

RESUMO

BACKGROUND: The North China Plain (NCP) faces a severe water shortage, and the amount of rainfall cannot guarantee the growth and development of winter wheat. Therefore, it is important to explore a suitable irrigation and planting pattern to solve the problem of water shortage in this region. RESULTS: A 4-year experiment was carried out in the NCP during 2015-2019. The main plots included two planting patterns: a wide-precision planting pattern (W) and a conventional planting pattern. Two irrigation regimes were established for each planting pattern: 60-mm irrigation at the jointing stage (I1) and 60-mm irrigation delayed 10 days at the jointing stage (I2). The soil water consumption, dry matter translocation, grain yield and crop water productivity were investigated. The results showed that WI2 treatment obtained the highest grain yield and crop water productivity. The wide-precision planting pattern could significantly decrease soil water consumption; however, delayed irrigation effectively reduced soil water consumption only in normal rainfall years. The coupling of delayed irrigation at the jointing stage and a wide-precision planting pattern significantly enhanced dry matter accumulation after flowering and the contribution of dry matter accumulation after flowering to grain yield during the growing seasons. WI2 could decrease the evapotranspiration and improve the grain yield, thus increasing crop water productivity. CONCLUSION: The combination of a wide-precision planting pattern and delayed irrigation at the jointing stage was the appropriate agronomic practice for efficient grain yield and crop water productivity in the North China Plain. © 2022 Society of Chemical Industry.


Assuntos
Irrigação Agrícola , Triticum , Irrigação Agrícola/métodos , Água , Estações do Ano , Biomassa , Solo , Grão Comestível , China
17.
Front Plant Sci ; 13: 1067618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507440

RESUMO

Continuous cropping of soybean leads to soil environment deterioration and soil-borne disease exacerbation, which in turn limits the sustainability of agricultural production. Chitin amendments are considered promising methods for alleviating soybean continuous cropping obstacles; however, the underlying mechanisms of soil sickness reduction remain unclear. In this study, soil amendments with pure and crude chitin at different addition dosages were employed to treat diseased soil induced by continuous cropping of soybean for five years. Chitin amendments, especially crude chitin, remarkably increased soil pH, available phosphorus (AP), potassium (AK) and nitrate nitrogen ( NO 3 - -N) contents, and improved soybean plant growth and soil microbial activities (FDA). Additionally, chitin application significantly enriched the relative abundances of the potential biocontrol bacteria Sphingomonas, Streptomyces, and Bacillus and the fungi Mortierella, Purpureocillium, and Metarhizium while depleted those of the potential plant pathogens Fusarium, Cylindrocarpon and Paraphoma. Moreover, chitin amendments induced looser pathogenic subnetwork structures and less pathogenic cooperation with other connected microbial taxa in the rhizosphere soils. The structural equation model (SEM) revealed that pure and crude chitin amendments promoted soybean plant growth by indirectly regulating soil pH-mediated soil microbial activities and potentially beneficial microbes, respectively. Therefore, the reduction strategies for continuous cropping obstacles by adding pure and crude chitin were distinct; pure chitin amendments showed general disease suppression, while crude chitin exhibited specific disease suppression. Overall, chitin amendments could suppress potential plant pathogens and improve soil health, thereby promoting soybean growth, which provides new prospects for cultivation practices to control soybean continuous cropping obstacles.

18.
Front Chem ; 10: 1028372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199664

RESUMO

The present study focused on the development of Cur-loaded SOHA nanogels (Cur-SHNGs) to enhance the topical administration of Cur. The physiochemical properties of Cur-SHNGs were characterized. Results showed that the morphology of the Cur-SHNGs was spherical, the average size was 171.37 nm with a zeta potential of -13.23 mV. Skin permeation experiments were carried out using the diffusion cell systems. It was found that the skin retention of Cur-SHNGs was significantly improved since it showed the best retention value (0.66 ± 0.17 µg/cm2). In addition, the hematoxylin and eosin staining showed that the Cur-SHNGs improved transdermal drug delivery by altering the skin microstructure. Fluorescence imaging indicated that Cur-SHNGs could effectively deliver the drug to the deeper layers of the skin. Additionally, Cur-SHNGs showed significant analgesic and anti-inflammatory activity with no skin irritation. Taken together, Cur-SHNGs could be effectively used for the topical delivery of therapeutic drugs.

19.
Int J Nanomedicine ; 17: 4009-4022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105622

RESUMO

Background: The poor skin permeation and deposition of topical therapeutic drugs is a major issue in topical drug delivery, improving this issue is conducive to improving the topical therapeutic effect of drugs. Methods: In this study, octadecylamine modified hyaluronic acid (OHA) copolymer was synthesized by amide reaction technique to prepare curcumin (CUR)-loaded micelles (CUR-M) for topical transdermal administration. CUR-M was successfully prepared by dialysis, and the formulation was evaluated for particle size, zeta potential, surface morphology, entrapment effciency (EE%), drug loading (DL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the in vitro drug release. Additionally, in vitro skin permeation and retention, in vivo topical analgesic and anti-inflammatory activity, and skin irritation were assessed. Results: The mean drug loading (DL), drug entrapment efficiency (EE), hydrodynamic diameter and zeta potential of CUR-M were 8.26%, 90.86%, 165.64 nm and -26.85 mV, respectively. CUR-M was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), it was found that there was an interaction between CUR and OHA, and CUR existed in CUR-M in an amorphous form. CUR-M exhibited sustained release in 48 h and good stability at 4 °C for 21days. CUR-M could significantly increase the skin penetration and retention of CUR and had better analgesic and anti-inflammatory activities in vivo when compared with CUR solution. Hematoxylin-eosin staining results revealed that the transdermal penetration mechanism of CUR-M might be related to the hydration of stratum corneum by HA. In addition, CUR-M showed no skin irritation to mouse skin. Conclusion: CUR-M might be a promising and safe drug delivery system for the treatment of topical diseases.


Assuntos
Curcumina , Micelas , Animais , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico , Camundongos , Diálise Renal
20.
Front Nutr ; 9: 972794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967795

RESUMO

Traditional herbal therapy made from Lycium barbarum leaves has been said to be effective in treating metabolic diseases, while its exact processes are yet unknown. Natural flavonoids are considered as a secure and reliable method for treating obesity. We thus made an effort to investigate the processes by which flavonoids from L. barbarum leaves (LBLF) reduce obesity. To assess the effectiveness of the intervention following intragastric injection of various dosages of LBLF (50, 100, and 200 mg/kg⋅bw), obese model mice developed via a high-fat diet were utilized. Treatment for LBLF may decrease body weight gain, Lee's index, serum lipids levels, oxidative stress levels, and hepatic lipids levels. It may also enhance fecal lipids excretion and improve glucose tolerance. Additionally, LBLF therapy significantly restored gut dysfunction brought on by a high-fat diet by boosting gut bacterial diversities and altering the composition of the gut bacterial community by elevating probiotics and reducing harmful bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA