Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Tree Physiol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030688

RESUMO

Tropical montane evergreen broad-leaved forests cover the majority of forest areas and have high carbon storage in Xishuangbanna, southwest China. However, stem radial growth dynamics and their correlations with climate factors have never been analyzed in this forest type. By combining bi-weekly microcoring and high-resolution dendrometer measurements, we monitored xylogenesis and stem radius variations of the deciduous species Betula alnoides and the evergreen species Schima wallichii. We analyzed the relationships between weekly climate variables prior to sampling and the enlarging zone width or wall thickening zone width, as well as weekly radial increments and climate factors during two consecutive years (2020-2021) showing contrasting hydrothermal conditions in the pre-monsoon season. In the year 2020, which was characterized by a warmer and drier pre-monsoon season, the onset of xylogenesis and radial increments of B. alnoides and S. wallichi were delayed by three months and one month, respectively, compared to the year 2021. In 2020, xylem formation and radial increments were significantly reduced for B. alnoides, but not for S. wallichill. The thickness of enlarging zone and wall thickening zone in S. wallichill were positively correlated with relative humidity, minimum and mean air temperature, but were negatively correlated with vapor pressure deficit during 2020-2021. The radial increments of both species showed significant positive correlations with precipitation and relative humidity, and negative correlations with vapor pressure deficit and maximum air temperature during two years. Our findings reveal that drier pre-monsoon conditions strongly delay growth initiation and reduce stem radial growth, providing deep insights to understand tree growth and carbon sequestration potential in tropical forests under a predicted increase in frequent drought events.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 799-804, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926970

RESUMO

OBJECTIVE: To investigate the clinical significance of bone metabolic indexes for disease assessment and curative effect monitoring in multiple myeloma (MM) bone disease (MBD) patients with different blood separation results. METHODS: A total of 134 newly diagnosed MM patients treated in Cangzhou Hospital of Integrated TCM-WM-Hebei were enrolled and divided into control group [119 cases, serum, colloid and red blood cell (RBC) from top to bottom of sample] and abnormal group (15 cases, serum, mixed layer of RBC and serum, colloid and RBC from top to bottom of sample) according to the results of blood separation. According to the imaging findings, MBD was classified into grade 0-4, grade 0-2 was mild, and grade 3-4 was severe. The MBD grade of patients in the two groups was analyzed. The curative effect of MBD patients after chemotherapy and the changes of blood separation results and bone metabolic indexes before and after treatment were evaluated. The correlation between ß2-microglobulin (MG) and bone metabolic indexes was analyzed by Pearson correlation analysis. RESULTS: In the control group, there were 69 cases of grade 0-2 and 50 cases of grade 3-4, while in the abnormal group, there were 5 cases of grade 0-2 and 10 cases of grade 3-4, the difference was statistically significant (P < 0.05). The serum ß2-MG, ß-CTX levels in abnormal group were both significantly higher than those in control group, while the levels of P1NP and osteocalcin (OC) were significantly lower (all P < 0.001). In the control group, there were 95 patients with ≥ partial response (PR) and the blood separation results were not changed, while 24 patients with 0.05). Compared with before treatment, the levels of ß-CTX and ß2-MG in the control group with unchanged blood separation results were significantly decreased (both P < 0.001), while the levels of P1NP and OC were significantly increased (P < 0.01, P < 0.001), and the level of each index in the patients transformed to abnormal blood separation result after treatment did not significantly change (P >0.05); the levels of ß-CTX and ß2-MG in the abnormal group transformed to normal blood separation result were significantly decreased (both P < 0.01), while the levels of P1NP and OC were significantly increased (P < 0.001, P < 0.01), and the level of each index in patients with unchanged blood separation results did not significantly change (P>0.05). Pearson correlation analysis showed that serum ß2-MG was positively correlated with ß-CTX (r =0.709, P < 0.001), and negatively correlated with P1NP and OC (r =-0.410,r =-0.412, both P < 0.001). CONCLUSION: MBD patients with abnormal blood separation results have higher bone disease grade and poor prognosis, which is closely related to the significant increase of bone resorption index ß-CTX level and decrease of bone formation index P1NP and OC levels, leading to more serious bone metabolic homeostasis disorder. The results of blood separation combined with the changes of bone metabolic indexes can be used as one of the comprehensive predictors of disease condition, efficacy monitoring and prognosis evaluation of MBD patients.


Assuntos
Osso e Ossos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/sangue , Osso e Ossos/metabolismo , Doenças Ósseas , Microglobulina beta-2/sangue , Colágeno Tipo I/sangue , Osteocalcina/sangue , Masculino , Pessoa de Meia-Idade
3.
Neurosci Bull ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907076

RESUMO

Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.

4.
Polymers (Basel) ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891484

RESUMO

In this study, a highly efficient magnetic molecularly imprinted polymer nanocomposite material was prepared using multi-walled carbon nanotubes as carriers. The characterization of the obtained nanocomposite material was conducted using Fourier transform infrared spectroscopy, a vibrating sample magnetometer, a thermogravimetric analyzer, a scanning electron microscope, and a transmission electron microscope. The adsorption properties of the nanocomposite material were evaluated through adsorption experiments, including static adsorption, dynamic adsorption, and selective recognition studies. The prepared nanocomposite material, serving as a selective adsorbent, was applied in magnetic solid-phase extraction. Subsequently, the derivatized samples were analyzed for glucose in fish serum using liquid chromatography-tandem mass spectrometry. Under optimal conditions, the detection limit was 0.30 ng/mL, the quantitation limit was 0.99 ng/mL, satisfactory spiked recovery rates were obtained, and the relative standard deviation was less than 1.1%. Using 2-deoxy-D-ribose as the template molecule and a structural analog of glucose allowed us to eliminate the potential template leakage in qualitative and quantitative analyses, effectively avoiding the issues of false positives and potential quantitative errors, compared to traditional methods. A method for detecting glucose levels in fish serum based on molecularly imprinted polymer technology has been successfully developed to determine the stress and health levels of fish.

5.
Fish Shellfish Immunol ; 151: 109667, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830520

RESUMO

For effective restoration, conservation of Ussruri whitefish Coregonus ussuriensis Berg and coping with global climate change, effects of environmental temperature on Ussruri whitefish urgently need to be explored. In current study, the effects of different acclimation temperatures on the growth, digestive physiology, antioxidant ability, liver transcriptional responses and intestinal microflora patterns of Ussruri whitefish were investigated. Ussruri whitefish (15.20 g ± 1.23 g) were reared for 42 days under different acclimation temperatures, i.e., 10, 13, 16, 19, 22 and 25 °C, respectively. Result first determined 28 °C as the semi-lethal temperature in order to design the temperature gradient test. Highest main gain rate (MGR) and specific growth rate (SGR) were observed in fish group having acclimation temperature of 19 °C. Significantly decrease (P < 0.05) in triglyceride (TG) content appeared at 19 °C as compared to the 10 °C and 13 °C temperature groups. 19 °C notablely increased protease activities of stomach and intestine and intestinal lipase and amylase activities. 19 °C group obtained the highest activities of chloramphnicol acetyltransferase (CAT) and total antioxidant capacity (T-AOC) and higher activities of superoxide dismutase (SOD). The intestinal microflora composition was most conducive to maintaining overall intestinal health when the temperature was 19 °C, compared to 10 °C and 25 °C. Ussruri whitefish exposed to 10 °C and 25 °C possessed the lower Lactobacillus abundance compared to exposure to 19 °C. Temperature down to 10 °C or up to 25 °C, respectively, triggered cold stress and heat stress, which leading to impairment in intestinal digestion, liver antioxidant capacity and intestinal microflora structure. Liver transcriptome response to 10 °C, 19 °C and 25 °C revealed that Ussruri whitefish might require the initiation of endoplasmic reticulum stress to correct protein damage from cold-temperature and high-temperature stress, and it was speculated that DNAJB11 could be regarded as a biomarker of cold stress response.Based on the quadratic regression analysis of MGR and SGR against temperature, the optimal acclamation temperature were, respectively, 18.0 °C and 18.1 °C. Our findings provide valuable theoretical insights for an in-depth understanding of temperature acclimation mechanisms and laid the foundation for conservation and development of Ussruri whitefish germplasm resources.


Assuntos
Aclimatação , Antioxidantes , Digestão , Microbioma Gastrointestinal , Fígado , Salmonidae , Transcriptoma , Animais , Antioxidantes/metabolismo , Salmonidae/fisiologia , Salmonidae/genética , Temperatura
6.
Neurotox Res ; 42(3): 27, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819761

RESUMO

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Assuntos
Animais Recém-Nascidos , Astrócitos , Disfunção Cognitiva , Ferroptose , Isoflurano , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isoflurano/toxicidade , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Camundongos , Anestésicos Inalatórios/toxicidade , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Zool Res ; 45(3): 663-678, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766748

RESUMO

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Assuntos
Disfunção Cognitiva , Proteínas do Tecido Nervoso , Proteoma , Ribossomos , Sevoflurano , Comportamento Social , Animais , Masculino , Camundongos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/toxicidade , Anestésicos Inalatórios/farmacologia , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2281-2289, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812128

RESUMO

Liver fibrosis is a key pathological stage in the progression of chronic liver disease. If the disease is mistreated, it can further deteriorate into liver failure, which seriously affects the quality of life of patients and brings heavy medical costs. Hepatic stellate cell(HSC) activation triggers extracellular matrix(ECM) deposition, which plays an important driving role in liver fibrosis, and ferroptosis is an effective strategy to clear or reverse the activation of HSCs into a deactivated phenotype. Therefore, inhibiting the activation and proliferation of HSCs by regulating ferroptosis is the key to the treatment of this disease, so as to derive the prospect of inducing ferroptosis of HSCs(including RNA-binding proteins, non-coding RNA, chemicals, and active components of traditional Chinese medicine) to intervene in liver fibrosis. On this basis, this paper started from the activation of HSCs to induce ECM deposition and focused on summarizing the mechanism of inducing HSC ferroptosis in delaying the progression of liver fibrosis, so as to continuously enrich the clinical practice of liver fibrosis and provide a reference for subsequent basic research.


Assuntos
Ferroptose , Células Estreladas do Fígado , Cirrose Hepática , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Ferroptose/efeitos dos fármacos , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Animais , Matriz Extracelular/metabolismo
9.
Front Vet Sci ; 11: 1369845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694481

RESUMO

The Amur grayling (Thymallus arcticus grubei Dybowski, 1869), a species of potentially economic and research value, is renowned for its tender meat, exquisite flavor, and high nutritional contents. This study was conducted to investigate the physiological adaptation mechanisms to dietary lipids in Amur grayling fry (with average initial weight 4.64±0.03 g). This study involved a 56-day feeding trial with diets containing varying lipid levels (9.07%, 12.17%, 15.26%, 18.09%, 21.16%, and 24.07%, designated as GL1 through GL6, respectively) to explore the impact of dietary lipids on growth performance, intestinal digestion, liver antioxidative function, and transcriptomic profiles. Results showed that The group receiving 18% dietary lipid exhibited a markedly higher weight gain rate (WGR) and specific growth rate compared to other groups, alongside a reduced feed conversion ratio (FCR), except in comparison to the 15% lipid group. Activities of lipase in pancreatic secretion and amylase in stomach mucosa peaked in the 18% lipid treatment group, indicating enhanced digestive efficiency. The liver of fish in this group also showed increased activities of antioxidative enzymes and higher levels of glutathione and total antioxidative capacity, along with reduced malondialdehyde content compared to the 9% and 24% lipid treatments. Additionally, serum high-density lipoprotein cholesterol levels were highest in the 18% group. Transcriptomic analysis revealed four significant metabolic pathways affected: Cholesterol metabolism, Fat digestion and absorption, PPAR signaling, and Fatty acid degradation, involving key genes such as Lipase, Lipoprotein lipase, Fatty acid-binding protein, and Carnitine palmitoyltransferase I. These findings suggest that the liver of Amur grayling employs adaptive mechanisms to manage excessive dietary lipids. Quadratic regression analysis determined the optimal dietary lipid levels to be 16.62% and 16.52%, based on WGR and FCR, respectively. The optimal dietary lipid level for juvenile Amur grayling appears to be around 18%, as evidenced by improved growth performance, digestive function, balanced serum lipid profile, and enhanced liver antioxidative capacity. Exceeding this lipid threshold triggers both adaptive and potentially detrimental liver responses.

10.
Cureus ; 16(4): e58490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765384

RESUMO

The impact of general anesthetics on brain function development is one of the top frontier issues of public concern. However, little bibliometric analysis has investigated this territory systematically. Our study aimed to visualize the publications between 2000 and 2023 to inspire the trends and hotspots in anesthetic neurodevelopmental toxicity research. Publications from 2000 to 2023 were collected from the Web of Science Core Collection. CiteSpace was utilized to plot and analyze the network maps of countries, institutions, authors, journals, and keywords associated with these publications. A total of 864 publications, consisting of 786 original articles and 78 reviews, were extracted from 2000 to 2023. The annual publications have increased constantly over the past two decades. The USA and the People's Republic of China were the leading driving forces in this field. Harvard University was the most productive institution. Zhang Y published the most related articles, and Jevtovic-Todorovic V was mostly cited in this field. The most prolific journal was Pediatric Anesthesia, and the most frequently co-cited journal was Anesthesiology. Keywords were divided into nine clusters: "apoptosis", "propofol", "developing brain", "cognitive dysfunction", "neuronal cell degeneration", "brain", "neuroinflammation", "local anesthesia", and "oxygen therapy". The strongest citation bursts in earlier years were "learning disability", "cell death", and "cognitive function". The emerging trends in the coming years were "awake regional anesthesia", "behavioral outcome", and "infancy general anesthesia compared to spinal anesthesia". We conclude that anesthetic-induced neurotoxicity has received growing attention in the past two decades. Our findings evaluated the present status and research trends in this area, which may provide help for exploring further potential prospects on hot topics and frontiers.

11.
Antioxidants (Basel) ; 13(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790645

RESUMO

To investigate the ameliorative effects and mechanism of Lycium barbarum polysaccharide (LBP) on growth performance, oxidative stress, and lipid deposition in common carp (Cyprinus carpio) fed with high-fat diets, fish with an initial weight of 5.29 ± 0.12 g were divided into five experimental groups-including normal-fat diets, high-fat diets, and high-fat diets-supplemented with LBP (0.5, 1.0, and 2.0 g/kg) for 8 weeks. The results showed that high-fat diets resulted in significant decreases in final body weight, weight gain rate, and specific growth rate of fish, as well as causing a significant decrease in hepatic total antioxidant capacity, catalase, and glutathione peroxidase activities. These changes were accompanied by a significant decrease in lipase activity and ATP level and a significant increase in malondialdehyde content. The expression levels of lipid metabolism-related genes (acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase) were also markedly elevated by high-fat diets. Supplementation with 0.5-2.0 g/kg LBP in high-fat diets improved the reduced growth performance, increased hepatic total antioxidant enzymes, catalase, and glutathione peroxidase activities, and lowered malondialdehyde level in fish fed with high-fat diets. Additionally, dietary supplementation with LBP significantly downregulated hepatic gene expression levels of acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, sterol regulatory element-binding protein 1, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase. In conclusion, fish fed with high-fat diets demonstrated impaired growth performance, antioxidant capacity, and lipid metabolism, and dietary supplementation with 0.5-2.0 g/kg LBP ameliorated the impairments induced by high-fat diets.

13.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605677

RESUMO

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Assuntos
Ecossistema , Clima Tropical , Florestas , Árvores , Carbono
14.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38671885

RESUMO

The application of cottonseed protein concentrate (CPC) is an effective strategy to moderate the shortage of fish meal (FM) for the aquafeed industry. However, little attention has been paid to the effects of replacing fishmeal with CPC on cyprinid fish. This study used common carp (Cyprinus carpio) as the biological model and assessed the potential of applying CPC as a substitute for fishmeal in the diet of common carp. The proportion of fish meal substituted with CPC in the six diets was 0% (CPC0), 25% (CPC25), 50% (CPC50), 75% (CPC75), and 100% (CPC100). Each diet was fed to three replicate groups of common carp (4.17 ± 0.02 g) for 56 days. Results revealed that the CPC50 group significantly increased the growth indexes via up-regulating the genes of the GH/IGF axis and the TOR pathway. The intestinal digestive ability was also elevated in the CPC50 group via markedly increasing intestinal villus height, protease and lipase activities in the whole intestine, and the amylase activity of the foregut and midgut. The CPC50 group captured significantly higher activities and gene expressions of antioxidant enzymes and lower malonaldehyde contents via evoking the Nrf2/Keap1 signal pathway. The CPC50 group enhance the intestinal mechanical barrier via up-regulating the gene expressions of tight junction proteins and heighten the intestinal biological barrier by increasing the probiotics (Lactococcus) and decreasing the harmful bacteria (Enterococcus). But excessive substitution levels (75% and 100%) would compromise growth performance, intestinal antioxidant capacity, and immune function. The optimum substitution level was estimated to be 46.47%, 47.72%, and 46.43% using broken-line regression analyses based on mass gain rate, protein efficiency ratio, and feed conversion rate. Overall, the fishmeal in common carp feed could be substituted up to 50% by CPC without negative influence on growth, feed utilization, and or intestinal health.

15.
J Transl Med ; 22(1): 244, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448996

RESUMO

AIMS: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis. In light of this, our objective is to develop a prediction model for EBV infection following allo-HSCT. METHODS: A total of 466 patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) between September 2019 and December 2020 were included in this study. The patients were divided into a development cohort and a validation cohort based on the timing of their transplantation. Our aim was to develop and validate a grading scale using these cohorts to predict the risk of EBV infection within the first year after haplo-HSCT. Additionally, single-cell RNA sequencing (sc-RNAseq) data from the bone marrow of healthy donors were utilized to assess the impact of age on immune cells and viral infection. RESULTS: In the multivariate logistic regression model, four predictors were retained: donor age, female-to-male transplant, graft MNC (mononuclear cell) dose, and CD8 dose. Based on these predictors, an EBV reactivation predicting score system was constructed. The scoring system demonstrated good calibration in both the derivation and validation cohorts, as confirmed by the Hosmer-Lemeshow test (p > 0.05). The scoring system also exhibited favorable discriminative ability, as indicated by the C statistics of 0.72 in the derivation cohort and 0.60 in the validation cohort. Furthermore, the clinical efficacy of the scoring system was evaluated using Kaplan-Meier curves based on risk ratings. The results showed significant differences in EBV reactivation rates between different risk groups, with p-values less than 0.001 in both the derivation and validation cohorts, indicating robust clinical utility. The analysis of sc-RNAseq data from the bone marrow of healthy donors revealed that older age had a profound impact on the quantity and quality of immune subsets. Functional enrichment analysis highlighted that older age was associated with a higher risk of infection. Specifically, CD8 + T cells from older individuals showed enrichment in the pathway of "viral carcinogenesis", while older CD14 + monocytes exhibited enrichment in the pathway of "regulation of viral entry into host cell." These findings suggest that older age may contribute to an increased susceptibility to viral infections, as evidenced by the altered immune profiles observed in the sc-RNAseq data. CONCLUSION: Overall, these results demonstrate the development and validation of an effective scoring system for predicting EBV reactivation after haplo-HSCT, and provide insights into the impact of age on immune subsets and viral infection susceptibility based on sc-RNAseq analysis of healthy donors' bone marrow.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Humanos , Feminino , Masculino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Antivirais , Linfócitos T CD8-Positivos , Calibragem
16.
Sci Rep ; 14(1): 6262, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491084

RESUMO

CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining immune homeostasis in multiple sclerosis (MS). Hence, we aimed to explore the therapeutic efficacy and safety of adoptive cell therapy (ACT) utilizing induced antigen-specific Tregs in an animal model of MS, that is, in an experimental autoimmune encephalomyelitis (EAE) model. B cells from EAE model that were activated with soluble CD40L were used as antigen-presenting cells (APCs) to induce the differentiation of antigen-specific Tregs from naïve CD4 precursors, and then, a stepwise isolation of CD4+CD25highCD127low Tregs was performed using a flow sorter. All EAE mice were divided into Treg-treated group (2 × 104 cells in 0.2 mL per mouse, n = 14) and sham-treated group (0.2 mL normal saline (NS), n = 20), which were observed daily for clinical assessment, and for abnormal appearance for 6 weeks. Afterward, histological analysis, immunofluorescence and real-time PCR were performed. Compared to sham-treated mice, Treg-treated mice exhibited a significant decrease in disease severity scores and reduced inflammatory infiltration and demyelination in the spinal cord. Additionally, Tregs-treated mice demonstrated higher CCN3 protein and mRNA levels than sham-treated mice. The results of this preclinical study further support the therapeutic potential of this ACT approach in the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Linfócitos T Reguladores , Medula Espinal/patologia , Células Apresentadoras de Antígenos , Camundongos Endogâmicos C57BL
17.
Mol Nutr Food Res ; 68(7): e2300616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430210

RESUMO

SCOPE: Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS: In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid ß-oxidation related protein expression levels. CONCLUSIONS: This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/metabolismo , Estudos de Casos e Controles , Fígado/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
18.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247539

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors, and the mechanisms underlying the anti-ferroptosis of esophageal cancer cells are still largely unclear. This study aims to explore the roles of amplified protein kinase C iota (PKCiota) in the ferroptosis of ESCC cells. Cell viability, colony formation, MDA assay, Western blotting, co-IP, PLA, and RNA-seq technologies are used to reveal the roles and mechanisms underlying the PKCiota-induced resistance of ESCC cells to ferroptosis. We showed here that PKCiota was amplified and overexpressed in ESCC and decreased during RSL3-induced ferroptosis of ESCC cells. PKCiota interacted with GPX4 and the deubiquitinase USP14 and improved the protein stability of GPX4 by suppressing the USP14-mediated autophagy-lysosomal degradation pathway. PKCiota was negatively regulated by miR-145-5p, which decreased in esophageal cancer, and also regulated by USP14 and GPX4 by a positive feedback loop. PKCiota silencing and miR-145-5p overexpression suppressed tumor growth of ESCC cells in vivo, respectively; even a combination of silencing PKCiota and RSL3 treatment showed more vital suppressive roles on tumor growth than silencing PKCiota alone. Both PKCiota silencing and miR-145-5p overexpression sensitized ESCC cells to RSL3-induced ferroptosis. These results unveiled that amplified and overexpressed PKCiota induced the resistance of ESCC cells to ferroptosis by suppressing the USP14-mediated autophagic degradation of GPX4. Patients with PKCiota/USP14/GPX4 pathway activation might be sensitive to GPX4-targeted ferroptosis-based therapy.

19.
J Hazard Mater ; 465: 133244, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147756

RESUMO

Cadmium (Cd) is a heavy metal that is of great concern in agroecosystems due to its toxicity to plants, herbivores, carnivores, and human beings. The current study evaluated the allocation and bioaccumulation of Cd from soil to cotton plants, cotton plants to herbivore pests, and herbivorous pests to a natural enemy predator. When soil was spiked with 100 mg/kg Cd, results demonstrated that cotton roots accumulated more Cd than the stems and leaves. The bioaccumulation of Cd was less in 4th instar larvae, pupa, and adults of Serangium japonicum than in Bemisia tabaci adults. The bioaccumulation in S. japonicum elongated the immature development period and reduced adult longevity, oviposition days, fertility, and total pre-oviposition duration. The net reproduction of S. japonicum was also reduced, as was female mature weight and feeding potential; as a result, Cd exposure could reduce the future population size compared to uncontaminated populations. There was decreased activity of the antioxidant enzymes (SOD, CAT, and POD) and energy-conserving lipids (glycogen, triglyceride, and total cholesterol) in Cd-contaminated S. japonicum compared to controls. The detoxifying enzyme activity of GST and P450 increased while AChE activity did not change. The qRT-PCR research showed that SOD1, CAT, POD, glycogen, and triglyceride gene expression was higher than in controls, whereas detoxification gene expression did not change. Our results indicate that Cd exposure has a physiological trade-off between its adverse effects on life history traits and elevated detoxification and antioxidation of S. japonicum, which could result from gene expression alteration. Further studies are needed to assess whether Cd exposure causes irreversible DNA damage in S. japonicum.


Assuntos
Besouros , Hemípteros , Humanos , Animais , Feminino , Besouros/fisiologia , Cádmio , Antioxidantes , Glicogênio , Solo , Triglicerídeos
20.
J Nutr Biochem ; 123: 109484, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866428

RESUMO

n-3 polyunsaturated fatty acids (PUFA) have shown to exert beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Supplements of n-3 PUFA occur in either phospholipid or triacylglycerol form. The present study aimed to compare whether the different n-3 PUFA of marine-origin, namely krill oil, DHA/EPA-phospholipid (PL), and EPA/DHA-triacylglycerol (TAG) forms had differential abilities to ameliorate NAFLD. The NAFLD model was established in mice fed a high-fat and high-cholesterol diet (HFD). The mice showed evidence of weight gain, dyslipidemia, insulin resistance and hepatic steatosis after 9 weeks of HFD, while the three forms of the n-3 PUFA reduced hepatic TAG accumulation, fatty liver and improved insulin instance, and hepatic biomarkers after 9 weeks of intervention. Of these, krill oil intervention significantly reduced adipocyte hypertrophy and hepatic steatosis in comparison with DHA/EPA-PL and EPA/DHA-TAG groups. Importantly, only krill oil intervention significantly reduced serum alanine transaminase, aspartate transaminase concentrations and low-density lipoprotein-cholesterol, compared with the HFD group. Supplemental n-3 PUFA lowered circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations, compared with the HFD group, which was associated with down-regulating CB1 and upregulating adiponectin expressions in adipose tissue. Besides, targeted lipidomic analyses indicated that the increased adiponectin levels were accompanied by reductions in hepatic ceramide levels. The reduced ceramide levels were associated with inhibiting lipid synthesis and increasing fatty acid ß-oxidation, finally inhibiting TAG accumulation in the liver. Through mediating CB1/adiponectin/ceramide pathway, the present study suggested that administration of krill oil had superior health effects in the therapy of NAFLD in comparison with DHA/EPA-PL and EPA/DHA-TAG.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipídeos/metabolismo , Adiponectina/metabolismo , Triglicerídeos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Colesterol/metabolismo , Receptores de Canabinoides/metabolismo , Ácidos Graxos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA