Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(11): 438, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843728

RESUMO

An aptamer sensor has been developed utilizing a dual-mode and stimuli-responsive strategy for quantitative detection of AßO (amyloid-beta oligomers) through simultaneous electrochemical and fluorescence detection. To achieve this, we employed UIO-66-NH2 as a carrier container to load MB (Methylene Blue), and Fe3O4 MNPs (iron oxide magnetic nanoparticles) with aptamer (ssDNA-Fe3O4 MNPs) fixed on their surface for biological gating. The ssDNA-Fe3O4 MNPs were immobilized onto the surface of UIO-66-NH2 through hydrogen bonding between the aptamer and the -NH2 group on the surface of UIO-66-NH2, thereby encapsulating MB and forming ssDNA-Fe3O4@MB@UIO-66-NH2. During the detection of AßO, the aptamer selectively reacted with AßO to form the AßO-ssDNA-Fe3O4 complex, leading to its detachment from the surface of UIO-66-NH2. This detachment facilitated the release of MB, enabling its electrochemical detection. Simultaneously, the AßO-ssDNA-Fe3O4 complex was efficiently collected and separated using a magnet after leaving the container's surface. Furthermore, the addition of NaOH facilitated the disconnection of biotin modifications at the 3' end of the aptamer from the avidin modifications on the Fe3O4 MNPs. Consequently, the aptamer detached from the surface of Fe3O4 MNPs, resulting in the restoration of fluorescence intensity of FAM (fluorescein-5'-carboxamidite) modified at its 5' end for fluorescence detection. The dual-mode sensor exhibited significantly enhanced differential pulse voltammetry signals and fluorescence intensity compared to those in the absence of AßO. The sensor demonstrated a wide detection range of 10 fM to 10 µM, with a detection limit of 3.4 fM. It displayed excellent performance in detecting actual samples and holds promising prospects for early diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Aptâmeros de Nucleotídeos , Humanos , Peptídeos beta-Amiloides , Fluorescência , Doença de Alzheimer/diagnóstico
2.
Adv Mater ; 34(40): e2205679, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986669

RESUMO

Bioinspired artificial visual perception devices with the optical environment-adaptable function have attracted significant attention for their promising potential in applications like robotics and machine vision. In this regard, a photodetector with in-sensor adaptability is longed for in terms of complexity, efficiency, and cost. Here, a near-infrared phototransistor with a benign light irradiance-adaptability is presented. The phototransistor uses a vertically stacking graphene/lead sulfide quantum dots/graphene heterojunction as the conductive channel. Compared with ordinary lead sulfide quantum dots-decorated graphene phototransistors, the present device demonstrates a faster photoresponse speed and an abnormal transfer characteristic. The latter characteristic is induced by the gate voltage-tunable Fermi level in the heterojunction and the abundant electron trap states in the quantum dot film, which jointly results in an intense dependence of the photoresponse on the gate voltage. The dynamic trapping and de-trapping processes in the quantum dot film enable the inhibition or potentiation of the photoresponse, based on which the photopic or scotopic adaptation behavior of the human retina is successfully mimicked, respectively. By providing an irradiance-adaptable photodetector with a spectral response beyond visible light, this work should inspire future research on artificial environment-adaptable perception devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA