Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401439, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845528

RESUMO

Solid-state sodium metal batteries have been extensively investigated because of their potential to improve safety, cost-effectiveness, and energy density. The development of such batteries urgently required a solid-state electrolyte with fast Na-ion conduction and favorable interfacial compatibility. Herein, the progress on developing the NaB3H8 solid-state electrolytes is reported, which show a liquid-like ionic conductivity of 0.05 S cm-1 at 56 °C with an activation energy of 0.35 eV after an order-disorder phase transformation, matching or surpassing the best single-anion hydridoborate conductors investigated up to now. The steady polarization voltage and significantly decreased resistance are achieved in the symmetric Na/NaB3H8/Na cell, indicating the great electrochemical stability and favorable interfacial contact with the Na metal of NaB3H8. Furthermore, a Na/NaB3H8/TiS2 battery, the first high-rate (up to 1 C) solid-state sodium metal battery using the single-anion hydridoborate electrolyte, is demonstrated, which exhibits superior rate capability (168.2 mAh g-1 at 0.1 C and 141.2 mAh g-1 at 1 C) and long-term cycling stability (70.9% capacity retention at 1 C after 300 cycles) at 30 °C. This work may present a new possibility to solve the interfacial limitations and find a new group of solid-state electrolytes for high-performance sodium metal batteries.

2.
Inorg Chem ; 62(22): 8700-8709, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37224452

RESUMO

Recent research has attracted considerable attention toward N-heterocyclic carbene-coordinated boranes (NHC-borane) and their B-substituted derivatives because of their unique characteristics. In the present work, we focused on the syntheses, structures, and reactivities of such types of amine complexes, [NHC·BH2NH3]X ((NHC = IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and IMe (1,3-dimethylimidazol-2-ylidene); X = Cl, I, OTf). We have developed a synthetic method to access NHC·BH2NH2 through the reaction of NaH with [IPr·BH2NH3]I, which was synthesized by the reaction of IPr·BH2I with NH3. As a Lewis base, NHC·BH2NH2 could further react with HCl or HOTf to produce the corresponding salts of [IPr·BH2NH3]+. IPr·BH2NH2BH2X (X = Cl, I) were synthesized by the reaction of HCl/I2 with IPr·BH2NH2BH3 and then converted to [IPr·BH2NH2BH2·IPr]X (X = Cl, I) by reacting with IPr. The IMe-coordinated boranes reacted quite similarly. The preliminary results revealed that the introduction of the NHC molecule has a considerable impact on the solubility and reactivities of aminoboranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA