Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genome Biol ; 25(1): 127, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773638

RESUMO

BACKGROUND: Gene regulatory network (GRN) models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such gene regulatory ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the underlying GRN governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impede either scalability, explainability, or both. RESULTS: We developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that overcomes limitations of other methods by flexibly incorporating prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of GRN ODEs. We tested the accuracy of PHOENIX in a series of in silico experiments, benchmarking it against several currently used tools. We demonstrated PHOENIX's flexibility by modeling regulation of oscillating expression profiles obtained from synchronized yeast cells. We also assessed the scalability of PHOENIX by modeling genome-scale GRNs for breast cancer samples ordered in pseudotime and for B cells treated with Rituximab. CONCLUSIONS: PHOENIX uses a combination of user-defined prior knowledge and functional forms from systems biology to encode biological "first principles" as soft constraints on the GRN allowing us to predict subsequent gene expression patterns in a biologically explainable manner.


Assuntos
Redes Reguladoras de Genes , Humanos , Redes Neurais de Computação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Modelos Genéticos
2.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36909563

RESUMO

Modeling dynamics of gene regulatory networks using ordinary differential equations (ODEs) allow a deeper understanding of disease progression and response to therapy, thus aiding in intervention optimization. Although there exist methods to infer regulatory ODEs, these are generally limited to small networks, rely on dimensional reduction, or impose non-biological parametric restrictions - all impeding scalability and explainability. PHOENIX is a neural ODE framework incorporating prior domain knowledge as soft constraints to infer sparse, biologically interpretable dynamics. Extensive experiments - on simulated and real data - demonstrate PHOENIX's unique ability to learn key regulatory dynamics while scaling to the whole genome.

3.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944511

RESUMO

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Sequência de Bases , Cromossomos/genética , Saccharomyces cerevisiae/genética , Biologia Sintética
4.
Mol Cell ; 83(23): 4424-4437.e5, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37944526

RESUMO

Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.


Assuntos
Núcleo Celular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromossomos/genética , Genoma Fúngico , Biologia Sintética/métodos
5.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014256

RESUMO

Gene regulatory networks (GRNs) are effective tools for inferring complex interactions between molecules that regulate biological processes and hence can provide insights into drivers of biological systems. Inferring co-expression networks is a critical element of GRN inference as the correlation between expression patterns may indicate that genes are coregulated by common factors. However, methods that estimate co-expression networks generally derive an aggregate network representing the mean regulatory properties of the population and so fail to fully capture population heterogeneity. To address these concerns, we introduce BONOBO (Bayesian Optimized Networks Obtained By assimilating Omics data), a scalable Bayesian model for deriving individual sample-specific co-expression networks by recognizing variations in molecular interactions across individuals. For every sample, BONOBO assumes a Gaussian distribution on the log-transformed centered gene expression and a conjugate prior distribution on the sample-specific co-expression matrix constructed from all other samples in the data. Combining the sample-specific gene expression with the prior distribution, BONOBO yields a closed-form solution for the posterior distribution of the sample-specific co-expression matrices, thus making the method extremely scalable. We demonstrate the utility of BONOBO in several contexts, including analyzing gene regulation in yeast transcription factor knockout studies, prognostic significance of miRNA-mRNA interaction in human breast cancer subtypes, and sex differences in gene regulation within human thyroid tissue. We find that BONOBO outperforms other sample-specific co-expression network inference methods and provides insight into individual differences in the drivers of biological processes.

6.
Cell Genom ; 3(11): 100437, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020969

RESUMO

Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.

7.
Cell Genom ; 3(11): 100418, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020971

RESUMO

We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.

8.
Cell Genom ; 3(11): 100419, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020974

RESUMO

We describe the complete synthesis, assembly, debugging, and characterization of a synthetic 404,963 bp chromosome, synIX (synthetic chromosome IX). Combined chromosome construction methods were used to synthesize and integrate its left arm (synIXL) into a strain containing previously described synIXR. We identified and resolved a bug affecting expression of EST3, a crucial gene for telomerase function, producing a synIX strain with near wild-type fitness. To facilitate future synthetic chromosome consolidation and increase flexibility of chromosome transfer between distinct strains, we combined chromoduction, a method to transfer a whole chromosome between two strains, with conditional centromere destabilization to substitute a chromosome of interest for its native counterpart. Both steps of this chromosome substitution method were efficient. We observed that wild-type II tended to co-transfer with synIX and was co-destabilized with wild-type IX, suggesting a potential gene dosage compensation relationship between these chromosomes.

9.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790409

RESUMO

Lung adenocarcinoma (LUAD) has been observed to have significant sex differences in incidence, prognosis, and response to therapy. However, the molecular mechanisms responsible for these disparities have not been investigated extensively. Sample-specific gene regulatory network methods were used to analyze RNA sequencing data from non-cancerous human lung samples from The Genotype Tissue Expression Project (GTEx) and lung adenocarcinoma primary tumor samples from The Cancer Genome Atlas (TCGA); results were validated on independent data. We observe that genes associated with key biological pathways including cell proliferation, immune response and drug metabolism are differentially regulated between males and females in both healthy lung tissue, as well as in tumor, and that these regulatory differences are further perturbed by tobacco smoking. We also uncovered significant sex bias in transcription factor targeting patterns of clinically actionable oncogenes and tumor suppressor genes, including AKT2 and KRAS. Using differentially regulated genes between healthy and tumor samples in conjunction with a drug repurposing tool, we identified several small-molecule drugs that might have sex-biased efficacy as cancer therapeutics and further validated this observation using an independent cell line database. These findings underscore the importance of including sex as a biological variable and considering gene regulatory processes in developing strategies for disease prevention and management.

10.
Res Sq ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993392

RESUMO

Models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the causal gene-regulatory network (GRN) governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impedes scalability and/or explainability. To overcome these limitations, we developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that can flexibly incorporate prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of ODEs. We test accuracy of PHOENIX in a series of in silico experiments benchmarking it against several currently used tools for ODE estimation. We also demonstrate PHOENIX's flexibility by studying oscillating expression data from synchronized yeast cells and assess its scalability by modelling genome-scale breast cancer expression for samples ordered in pseudotime. Finally, we show how the combination of user-defined prior knowledge and functional forms from systems biology allows PHOENIX to encode key properties of the underlying GRN, and subsequently predict expression patterns in a biologically explainable way.

11.
Genome Biol ; 24(1): 45, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894939

RESUMO

Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Humanos , Algoritmos , Software , Multiômica , Biologia Computacional/métodos
13.
Cancer Res ; 81(10): 2588-2599, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33731442

RESUMO

Genome-wide association studies (GWAS) have found hundreds of single-nucleotide polymorphisms (SNP) associated with increased risk of cancer. However, the amount of heritable risk explained by SNPs is limited, leaving most of the cancer heritability unexplained. Tumor sequencing projects have shown that causal mutations are enriched in genic regions. We hypothesized that SNPs located in protein coding genes and nearby regulatory regions could explain a significant proportion of the heritable risk of cancer. To perform gene-level heritability analysis, we developed a new method, called Bayesian Gene Heritability Analysis (BAGHERA), to estimate the heritability explained by all genotyped SNPs and by those located in genic regions using GWAS summary statistics. BAGHERA was specifically designed for low heritability traits such as cancer and provides robust heritability estimates under different genetic architectures. BAGHERA-based analysis of 38 cancers reported in the UK Biobank showed that SNPs explain at least 10% of the heritable risk for 14 of them, including late onset malignancies. We then identified 1,146 genes, called cancer heritability genes (CHG), explaining a significant proportion of cancer heritability. CHGs were involved in hallmark processes controlling the transformation from normal to cancerous cells. Importantly, 60 of them also harbored somatic driver mutations, and 27 are tumor suppressors. Our results suggest that germline and somatic mutation information could be exploited to identify subgroups of individuals at higher risk of cancer in the broader population and could prove useful to establish strategies for early detection and cancer surveillance. SIGNIFICANCE: This study describes a new statistical method to identify genes associated with cancer heritability in the broader population, creating a map of the heritable cancer genome with gene-level resolution.See related commentary by Bader, p. 2586.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Teorema de Bayes , Humanos , Neoplasias/genética
14.
Semin Cancer Biol ; 72: 175-184, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32569822

RESUMO

Decades of research have shown that rare highly penetrant mutations can promote tumorigenesis, but it is still unclear whether variants observed at high-frequency in the broader population could modulate the risk of developing cancer. Genome-wide Association Studies (GWAS) have generated a wealth of data linking single nucleotide polymorphisms (SNPs) to increased cancer risk, but the effect of these mutations are usually subtle, leaving most of cancer heritability unexplained. Understanding the role of high-frequency mutations in cancer can provide new intervention points for early diagnostics, patient stratification and treatment in malignancies with high prevalence, such as breast cancer. Here we review state-of-the-art methods to study cancer heritability using GWAS data and provide an updated map of breast cancer susceptibility loci at the SNP and gene level.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/patologia , Feminino , Humanos , Prognóstico
15.
BMC Bioinformatics ; 21(1): 476, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092528

RESUMO

BACKGROUND: Gene and protein interaction experiments provide unique opportunities to study the molecular wiring of a cell. Integrating high-throughput functional genomics data with this information can help identifying networks associated with complex diseases and phenotypes. RESULTS: Here we introduce an integrated statistical framework to test network properties of single and multiple genesets under different interaction models. We implemented this framework as an open-source software, called Python Geneset Network Analysis (PyGNA). Our software is designed for easy integration into existing analysis pipelines and to generate high quality figures and reports. We also developed PyGNA to take advantage of multi-core systems to generate calibrated null distributions on large datasets. We then present the results of extensive benchmarking of the tests implemented in PyGNA and a use case inspired by RNA sequencing data analysis, showing how PyGNA can be easily integrated to study biological networks. PyGNA is available at http://github.com/stracquadaniolab/pygna and can be easily installed using the PyPi or Anaconda package managers, and Docker. CONCLUSIONS: We present a tool for network-aware geneset analysis. PyGNA can either be readily used and easily integrated into existing high-performance data analysis pipelines or as a Python package to implement new tests and analyses. With the increasing availability of population-scale omic data, PyGNA provides a viable approach for large scale geneset network analysis.


Assuntos
Redes Reguladoras de Genes , Linguagens de Programação , Software , Algoritmos , Simulação por Computador , Análise de Sequência de RNA , Processos Estocásticos
16.
EMBO J ; 39(17): e104202, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32696476

RESUMO

IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.


Assuntos
Retroalimentação Fisiológica , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-17/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA