Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Artif Organs ; 47(4): 280-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624101

RESUMO

The challenges in achieving optimal outcomes for wound healing have persisted for decades, prompting ongoing exploration of interventions and management strategies. This study focuses on assessing the potential benefits of implementing a nano-gelatin scaffold for wound healing. Using a rat skin defect model, full-thickness incisional wounds were created on each side of the thoracic-lumbar regions after anesthesia. The wounds were left un-sutured, with one side covered by a gelatin nano-fibrous membrane and the other left uncovered. Wound size changes were measured on days 1, 4, 7, and 14, and on day 14, rats were sacrificed for tissue sample excision, examined with hematoxylin and eosin, and Masson's trichrome stain. Statistical comparisons were performed. The gelatin nanofibers exhibited a smooth surface with a fiber diameter of 260 ± 40 nm and porous structures with proper interconnectivity. Throughout the 14-day experimental period, significant differences in the percentage of wound closure were observed between the groups. Histological scores were higher in the experiment group, indicating less inflammation but dense and well-aligned collagen fiber formation. A preliminary clinical trial on diabetic ulcers also demonstrated promising results. This study highlights the potential of the nano-collagen fibrous membrane to reduce inflammatory infiltration and enhance fibroblast differentiation into myofibroblasts during the early stages of cutaneous wound healing. The nano-fibrous collagen membrane emerges as a promising candidate for promoting wound healing, with considerable potential for future therapeutic applications.

2.
Biomater Res ; 27(1): 98, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798744

RESUMO

BACKGROUND: Alzheimer's disease is a neurodegenerative disorder, and Aß aggregation is considered to be the central process implicated in its pathogenesis. Current treatments are faced by challenges such as serious side effects and reduced drug bioavailability. In this study, we developed a drug delivery system for intramuscular injection that uses cellular activity to achieve constant and long-term drug release. METHODS: Synthesized mesoporous hydroxyapatite (SHAP) was prepared via co-precipitation, and hydrophobic surface modification using stearic acid was then used to load clenbuterol by physical absorption, thus creating the drug delivery system. Clenbuterol release was achieved through cellular activity, with macrophage uptake triggering lysosome/endosome disruption, cytoplasmic release, extracellular exocytosis, and subsequent systemic circulation. RESULTS: We found that clenbuterol-loaded SHAP enabled sustained release for more than 2 weeks and effectively modulated inflammation, reduced Aß oligomer-induced toxicity, and prevented Aß aggregation. CONCLUSIONS: Our findings suggest that treatment with clenbuterol loaded in this SHAP delivery system could be a promising strategy for treating Alzheimer's disease.

3.
Bioengineering (Basel) ; 10(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508874

RESUMO

Osteoarthritis is a prevalent musculoskeletal disorder in the elderly, which leads to high rates of morbidity. Mesenchymal stem cells (MSCs) are a promising approach to promote tissue regeneration in the absence of effective long-term treatments. Small molecules are relatively inexpensive and can selectively alter stem cell behavior during their differentiation, making them an attractive option for clinical applications. In this study, we developed an extracellular matrix (ECM)-based biphasic scaffold (BPS) loaded with two small-molecule drugs, kartogenin (KGN) and metformin (MET). This cell-free biomimetic biphasic scaffold consists of a bone (gelatin/hydroxyapatite scaffold embedded with metformin [GHSM]) and cartilage (nano-gelatin fiber embedded with kartogenin [NGFK]) layer designed to stimulate osteochondral regeneration. Extracellular matrix (ECM)-based biomimetic scaffolds can promote native cell recruitment, infiltration, and differentiation even in the absence of additional growth factors. The biphasic scaffold (BPS) showed excellent biocompatibility in vitro, with mesenchymal stem cells (MSCs) adhering, proliferating, and differentiated on the biomimetic biphasic scaffolds (GHSM and NGFK layers). The biphasic scaffolds upregulated both osteogenic and chondrogenic gene expression, sulfated glycosaminoglycan (sGAG), osteo- and chondrogenic biomarker, and relative mRNA gene expression. In an in vivo rat model, histo-morphological staining showed effective regeneration of osteochondral defects. This novel BPS has the potential to enhance both subchondral bone repair and cartilage regeneration, demonstrating excellent effects on cell homing and the recruitment of endogenous stem cells.

4.
Brain Sci ; 13(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508996

RESUMO

With its pathophysiological characteristics strongly similar to patients with tardive dyskinesia (TD), haloperidol (HP)-induced neurotoxicity and orofacial dyskinesia (OD) in animal models have long been used to study human TD. This study aimed to explore the potential protective effects of betaine (BT), a vital biochemical compound present in plants, microorganisms, animals, and various dietary sources. The study focused on investigating the impact of BT on haloperidol (HP)-induced orofacial dyskinesia (OD) in rats, as well as the underlying neuroprotective mechanisms. To induce the development of OD, which is characterized by increased vacuous chewing movement (VCM) and tongue protrusion (TP), rats were administered HP (1 mg/kg i.p.) for 21 consecutive days. BT was administered intraperitoneally (i.p.) at doses of 30 and 100 mg/kg, 60 min later, for 21 successive days. On the 21st day, after evaluating OD behavior, the rats were sacrificed, and various measurements were taken to assess the nitrosative and oxidative status, antioxidant capacity, mitochondrial function, neuroinflammation, and apoptotic markers in the striatum. The results demonstrated that (1) HP induced OD development, and (2) BT was found to prevent most of the HP-induced OD; decrease oxidative stress levels; increase anti-oxidation power; prevent mitochondrial dysfunction; and reduce the levels of neuroinflammatory and apoptotic markers in the striatum. Our results demonstrate that the neuroprotective effects of BT against HP-induced OD are credited to its antioxidant prevention of mitochondrial dysfunction, anti-neuroinflammatory effects, and anti-apoptotic effects, suggesting that BT may be a novel therapeutic candidate in delaying or treating human TD in clinical settings. However, further studies will be warranted to extrapolate preclinical findings into clinical studies for a better understanding of the role of BT.

5.
Sci Rep ; 12(1): 9940, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705614

RESUMO

Current rat alveolar ridge preservation models have not been well standardized. In this study, we proposed decoronation-induced infected alveolar socket model of rat. The bilateral maxillary first molars (M1) of twenty-four rats were decoronized or extracted. After 2, 6, 10, and 14 weeks, bone and soft tissue changes at M1 and periodontal conditions of maxillary second (M2) and third molars (M3) were evaluated by micro-computed tomography and histological analysis. Additional eighteen rats with standardized size defects were grafted with Bio-Oss Collagen to compare with unmanipulated contralateral side. Decoronation preserved greater bone and soft tissue dimensions at M1, provided larger three-dimensional (3D) bone contour volume, but also promoted periodontal breakdown of M2 Histological results showed intense inflammatory cell infiltrations and severe bone resorption within M1 socket and at mesial aspect of M2. The critical dimensions to accommodate largest standardized defect at M1 were 2.2-2.3 mm at vertical bone height and 2.8-3.2 mm at alveolar crestal width. Bio-Oss Collagen could not fully preserve buccal or palatal bone height but could be beneficial in preserving ridge width in large alveolar defects. Collectively, if periodontally-involved alveolar bone defect is preferred, we suggest extracting M1 roots 6 weeks after decoronation to allow periodontitis to occur at M2. If standardized critical dimension defect is preferred, we suggest extracting M1 roots 2 weeks after decoronation, and creating defect in the middle of M1 site with size no larger than 2.7 mm diameter to its full depth.


Assuntos
Perda do Osso Alveolar , Processo Alveolar , Alvéolo Dental , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/patologia , Animais , Colágeno/uso terapêutico , Minerais , Ligamento Periodontal/patologia , Ratos , Extração Dentária , Microtomografia por Raio-X
6.
Antioxidants (Basel) ; 11(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453412

RESUMO

In Alzheimer's disease (AD), the most common cause of dementia, patients generally forget to take pills or skip medication due to side effects, affecting the treatment efficacy. In this study, we combined a poly(lactic-co-glycolic acid), (PLGA)-poly(ethylene glycol), and (PEG)-PLGA thermo-sensitive hydrogel with curcumin (PGC) to deliver an intramuscular injection that could continuously release curcumin and maintain it at a constant level in blood to prevent AD development or progression. We evaluated the drug release profile and cytotoxicity of PGC and its effects on AD pathology through in vitro and in vivo studies and on cognitive function through an aluminum-chloride-induced AD rat model. In the in vitro study, PGC exhibited a lack of cytotoxicity, excellent anti-inflammatory and antioxidant properties, and microglial modulation. In the Morris water maze test, the PGC injection-administered AD rats presented well-focused searching behavior with the shortest swimming path and longest retention times in the quadrant where the platform was initially located. Furthermore, PGC reduced amyloid-beta aggregation and deposition and significantly increased hippocampal activity. This study demonstrated that intramuscular PGC injection can effectively prevent AD development or progression in rats without inducing toxicity; therefore, this strategy could help overcome the present challenges in AD management in humans.

7.
Neurotox Res ; 40(1): 241-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988886

RESUMO

Rotenone (RO)-induced neurotoxicity exhibits pathophysiological features similar to those reported in patients with Parkinson's disease (PD), such as nitrosative and oxidative stress, mitochondrial dysfunction, and neural cytoarchitecture alterations in the substantia nigra pars compacta (SNpc)/striatum (ST), which has been used for decades as an animal model of PD in humans. L-Theanine (LT), a major amino acid component of green tea, exhibits potent antioxidant and anti-inflammatory activities and protects against various neural injuries. We investigated the potential therapeutic effects of LT on RO-induced behavioral and neurochemical dysfunction in rats and the neuroprotective mechanisms underlying these effects. Unilateral stereotaxic intranigral infusion of RO into the SNpc to induce PD-like manifestations induced significant behavioral impairment as evaluated using an open field test, rotarod test, grip strength measurement, and beam-crossing task in rats. LT treatment (300 mg/kg i.p., 21 days) ameliorated most RO-induced behavioral impairments. In addition, LT treatment reduced nitric oxide level and lipid peroxidation production, increased mitochondrial function and integrity, as well as the activities of mitochondrial complexes I, II, IV, and V, and reduced the levels of neuroinflammatory and apoptotic markers in the SNpc and ameliorated the levels of catecholamines, GABA and glutamate in the ST induced by RO. These results demonstrate the possible therapeutic effects of LT against RO-induced behavioral impairments, including antioxidative effects, prevention of mitochondrial dysfunction, prevention of neurochemical deficiency, anti-neuroinflammatory effects, and anti-apoptotic effects. This is the first report on the neuroprotective effect of LT against RO-induced behavioral impairments, and the above evidence provides a potential clinically relevant role for LT in the management of human PD.


Assuntos
Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Glutamatos/uso terapêutico , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Ratos , Rotenona/toxicidade
8.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008984

RESUMO

In this study, we fabricated gelatin/nano-hydroxyapatite/metformin scaffold (GHMS) and compared its effectiveness in bone regeneration with extraction-only, Sinbone, and Bio-Oss Collagen® groups in a critical size rat alveolar bone defect model. GHMS was synthesized by co-precipitating calcium hydroxide and orthophosphoric acid within gelatin solution, incorporating metformin, and cross-linked by microbial transglutaminase. The morphology, characterization, and biocompatibility of scaffold were examined. The in vitro effects of GHMS on osteogenic gene and protein expressions were evaluated. In vivo bone formation was assessed in a critical size rat alveolar bone defect model with micro-computed tomography and histological examination by comparing GHMS with extraction-only, Sinbone, and Bio-Oss Collagen®. The synthesized GHMS had a highly interconnected porous structure with a mean pore size of 81.85 ± 13.8 µm. GHMS exhibited good biocompatibility; promoted ALPL, RUNX2, SP7, BGLAP, SPARC and Col1a1 gene expressions; and upregulated the synthesis of osteogenic proteins, including osteonectin, osteocalcin, and collagen type I. In critical size rat alveolar bone defects, GHMS showed superior bone regeneration compared to extraction-only, Sinbone, and Bio-Oss Collagen® groups as manifested by greater alveolar ridge preservation, while more bone formation with a lower percentage of connective tissue and residual scaffold at the defect sites grafted with GHMS in histological staining. The GHMS presented in this study may be used as a potential bone substitute to regenerate alveolar bone. The good biocompatibility, relatively fast degradation, interconnected pores allowing vascularization, and higher bioactivity properties of the components of the GHMS (gelatin, nHA, and metformin) may contribute to direct osteogenesis.


Assuntos
Regeneração Óssea , Durapatita , Gelatina , Regeneração Tecidual Guiada , Metformina/administração & dosagem , Nanocompostos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Biomarcadores , Fenômenos Químicos , Durapatita/química , Gelatina/química , Regeneração Tecidual Guiada/métodos , Imuno-Histoquímica , Minerais , Modelos Animais , Nanocompostos/química , Nanocompostos/ultraestrutura , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ratos , Engenharia Tecidual , Alicerces Teciduais/química , Microtomografia por Raio-X
9.
J Formos Med Assoc ; 121(4): 802-814, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34531102

RESUMO

BACKGROUND/PURPOSE: We investigated the protective efficacy of l-theanine (LT), the major amino acid components of green tea, on chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain (NP) development and neuronal functional changes in rats. METHODS: Rats with NP induced by CCI of the left sciatic nerve and sham-operated rats received LT or saline solution, with pain sensitive tests of thermal hyperalgesia and mechanical allodynia. Motor and sensory nerve conduction velocities were measured after surgery. Subsequently, the rats were sacrificed; the sciatic nerve was excised, homogenized, prepared and subjected for estimation of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), myeloperoxidase (MPO), and caspase-3. RESULTS: CCI produced a significant increase in hyperalgesia and allodynia, an increase in SFI, a decrease in nerve conduction velocity, increases in NO, MDA, TNF-α, IL-1ß, IL-6, MPO, and caspase-3 levels, as well as reduction of GSH, SOD, and CAT in the rat sciatic nerve. LT treatment significantly and dose-dependently alleviated CCI-induced nociceptive pain thresholds and ameliorated abnormal nerve conduction and functional loss in rats with CCI. Moreover, LT treatment reduced NO and MDA levels, increased antioxidative strength, and markedly suppressed the levels of neuroinflammatory and apoptotic markers in injured sciatic nerves. CONCLUSION: This is the first report on the ameliorative effect of LT in CCI-induced NP in rats. This effect might be attributed to its anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective, thus making it potentially useful as an adjuvant to conventional treatment.


Assuntos
Neuralgia , Fármacos Neuroprotetores , Animais , Constrição , Glutamatos , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Neuralgia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ratos , Nervo Isquiático/lesões , Nervo Isquiático/patologia
10.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884565

RESUMO

Amyloid-ß (Aß) peptides play a key role in Alzheimer's disease (AD), the most common type of dementia. In this study, a polysaccharide from Bletilla striata (BSP), with strong antioxidant and anti-inflammatory properties, was extracted using a low-temperature method and tested for its efficacy against AD, in vitro using N2a and BV-2 cells, and in vivo using an AD rat model. The characterization of the extracted BSP for its molecular structure and functional groups demonstrated the effectiveness of the modified method for retaining its bioactivity. In vitro, BSP reduced by 20% reactive oxygen species (ROS) levels in N2a cells (p = 0.0082) and the expression levels of inflammation-related genes by 3-fold TNF-α (p = 0.0048), 4-fold IL-6 (p = 0.0019), and 2.5-fold IL-10 (p = 0.0212) in BV-2 cells treated with Aß fibrils. In vivo, BSP recovered learning memory, ameliorated morphological damage in the hippocampus and cortex, and reduced the expression of the ß-secretase protein in AlCl3-induced AD rats. Collectively, these findings demonstrated the efficacy of BSP for preventing and alleviating the effects of AD.


Assuntos
Cloreto de Alumínio/toxicidade , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Temperatura Baixa , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
11.
Neurotox Res ; 39(3): 774-786, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33523404

RESUMO

Animal models of haloperidol (HAL)-induced neurotoxicity and orofacial dyskinesia (OD) have long been used to study human tardive dyskinesia (TD). Similar to patients with TD, these models show strong pathophysiological characteristics such as striatal oxidative stress and neural cytoarchitecture alteration. Naringin (NAR), a bioflavonoid commonly found in citrus fruits, has potent antioxidative, anti-inflammatory, antiapoptotic, and neuroprotective properties. The present study evaluated the potential protective effects of NAR against HAL-induced OD in rats and the neuroprotective mechanisms underlying these effects. HAL treatment (1 mg/kg i.p. for 21 successive days) induced OD development, characterized by increased vacuous chewing movement (VCM) and tongue protrusion (TP), which were recorded on the 7th, 14th, and 21st day of drug treatment. NAR (30, 100, and 300 mg/kg) was administered orally 60 min before HAL injection for 21 successive days. On the 21st day, after behavioral testing, the rats were sacrificed, and the nitrosative and oxidative status, antioxidation power, neurotransmitter levels, neuroinflammation, and apoptotic markers in the striatum were measured. HAL induced OD development, with significant increases in the frequency of VCM and TP. NAR treatment (100 and 300 mg/kg) prevented HAL-induced OD significantly. Additionally, NAR treatment reduced the HAL-induced nitric oxide and lipid peroxide production, increased the antioxidation power and neurotransmitter levels in the striatum, and significantly reduced the levels of neuroinflammatory and apoptotic markers. Our results first demonstrate the neuroprotective effects of NAR against HAL-induced OD, suggesting that NAR may help in delaying or treating human TD in clinical settings.


Assuntos
Modelos Animais de Doenças , Discinesias/tratamento farmacológico , Flavanonas/uso terapêutico , Haloperidol/toxicidade , Discinesia Tardia/induzido quimicamente , Discinesia Tardia/tratamento farmacológico , Animais , Antipsicóticos/toxicidade , Discinesias/metabolismo , Flavanonas/farmacologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar , Discinesia Tardia/metabolismo
12.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992833

RESUMO

Osteoarthritis (OA) is the most common joint disease type and is accompanied by varying degrees of functional limitation. Both hyaluronic acid (HA) joint injections and pain relievers are efficient treatments for early-stage osteoarthritis. However, for the decomposition by hyaluronidase and free radicals in the knee joint, HA injection treatment has limited effect time. The cerium oxide nanoparticles (CeO2) is a long time free radical scavenger. CeO2 combined with HA expected, may extend the HA decomposition time and have a positive effect on osteoarthritis therapy. In this study, CeO2 was successfully synthesized using the hydrothermal method with a particle size of about 120 nm, which possessed excellent dispersibility in the culture medium. The in vitro OA model was established by cell treated with H2O2 for 30 min. Our study found that the inhibition of chondrocyte proliferation dose-dependently increased with H2O2 concentration but was significantly decreased by supplementation of cerium oxide nanoparticles. COL2a1 and ACAN gene expression in chondrocytes was significantly decreased after H2O2 treatment; however, the tendency was changed after cerium oxide nanoparticles treatment, which suggested that damaged chondrocytes were protected against oxidative stress. These findings suggest that cerium oxide nanoparticles are potential therapeutic applications in the early stage of OA.


Assuntos
Antioxidantes , Cério , Condrócitos/metabolismo , Ácido Hialurônico , Peróxido de Hidrogênio/efeitos adversos , Modelos Biológicos , Nanopartículas/química , Osteoartrite/tratamento farmacológico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Bovinos , Cério/química , Cério/farmacologia , Condrócitos/patologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Peróxido de Hidrogênio/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/metabolismo , Osteoartrite/patologia
13.
J Healthc Eng ; 2020: 1323270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32076494

RESUMO

Recent years have seen a rapidly rising number of oxygenated water brands that claim to impart health benefits and increase athletic performance by improving oxygen availability in the body. Drinks with higher dissolved oxygen concentrations have in recent times gained popularity as potential ergogenic aids, despite the lack of evidence regarding their efficacy. The aim of this study was to characterize oxygenated water and assess the improvement in uric acid metabolism while identifying performance enhancements in animals administered oxygenated water. Oxygenated water was characterized by hydrogen and oxygen nuclear magnetic resonance (NMR) spectroscopy. Hyperuricemia in rats was induced by treatment with oxonic acid potassium salt, and the animals were given oxygenated drinking water before, during, or after oxonic acid treatment. Serum uric acid was measured to confirm the effects on uric acid metabolism. Following oxygenation, the full width at half maximum (FWHM) was reduced to 11.56 Hz and 64.16 Hz in the hydrogen and oxygen NMR spectra, respectively. Oxygenated water molecule clusters were reduced in size due to the reduction in FWHM. Oxygen concentration did not vary significantly with increased temperature. However, standing time played a critical role in the amount of oxygen dissolved in the water. The rat studies indicated that oxygenated water reduced serum uric acid levels and their rate of increase and enhanced uric acid metabolism. A significant improvement in uric acid metabolism and rate of increase in serum uric acid concentration was observed in hyperuricemic rats administered oxygenated water compared to that in rats administered regular water. High oxygen concentrations enhanced the rate of oxygen absorption, leading to increased glycolysis and mitochondrial protein synthesis. Therefore, oxygenated water is a potential adjuvant therapy or health food for treatment of hyperuricemia.


Assuntos
Água Potável , Hiperuricemia/metabolismo , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Animais , Hiperuricemia/sangue , Modelos Animais , Ratos
14.
Neurotox Res ; 37(3): 669-682, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31811588

RESUMO

Rotenone (ROT)-induced neurotoxicity has been used for decades as an animal model of Parkinson's disease (PD) in humans. This model exhibits pathophysiological features similar to those reported in patients with PD, namely, striatal nitrosative and oxidative stress, mitochondrial dysfunction, and neural cytoarchitecture alteration. (-)Epigallocatechin-3-gallate (EGCG), the most abundant and potent green tea catechin, has notable anti-oxidative, anti-inflammatory, and neuroprotective effects. The objective of the present study was to investigate the potential protective effects of EGCG on ROT-induced motor and neurochemical dysfunctions in rats. Furthermore, we also aimed to study the neuroprotective mechanisms underlying these effects. ROT treatment (0.5 mg/kg s.c., 21 days) reduced body weight and induced significant motor impairments as assessed using an open-field test, rotarod test, grip strength measurement, and beam-crossing task. EGCG treatment (100 or 300 mg/kg i.p., 60 min prior to ROT administration, 21 days) prevented most of the ROT-induced motor impairments. Moreover, EGCG treatment reduced ROT-induced nitric oxide (NO) level and lipid peroxidation (LPO) production; increased the activity of succinate dehydrogenase (SDH), ATPase, and ETC enzymes and the levels of catecholamines in the striatum; and reduced the levels of neuroinflammatory and apoptotic markers. These results demonstrate the possible neuroprotective effects of EGCG against ROT-induced motor impairments, including anti-oxidatory effect, prevention of mitochondrial dysfunction, prevention of neurochemical deficiency, anti-neuroinflammatory effect, and anti-apoptotic effect. This is the first report about the neuroprotective effect of EGCG against ROT-induced motor impairments, and the above evidence provides a potential clinically relevant role for EGCG in delaying or treating human PD.


Assuntos
Catequina/análogos & derivados , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/prevenção & controle , Rotenona/toxicidade , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Catequina/administração & dosagem , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Mediadores da Inflamação/metabolismo , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos Wistar
15.
J Formos Med Assoc ; 119(9): 1405-1414, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31812333

RESUMO

BACKGROUND/PURPOSE: Spinal cord injury (SCI) is a devastating medical condition for which no effective pharmacological interventions exist. l-Theanine (LT), a major amino acid component of green tea, exhibits potent antioxidative and anti-inflammatory activities and protects against various neural injuries. Here, we evaluated the potential therapeutic effects of LT on the recovery of behavioral motor functions after SCI in rats and the underlying neuroprotective mechanisms. METHODS: SCI was induced by applying vascular clips to the dura through a four-level T5-T8 laminectomy, and saline or LT (10/30 mg/kg) was intrathecally administered at 1-, 6-, and 24-h post-SCI. At 72-h post-SCI, half of the rats from each group for each parameter were sacrificed, and their spinal cord was excised for measurement of malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase, catalase, tumor necrosis factor-α, interleukin-1ß/-6, myeloperoxidase, and caspase-3. The remaining rats from each group were subjected to Bresnahan locomotor-rating scale (BBB), inclined-plane, toe-spread, and hindfoot bar-grab tests at 1-, 4-, 7-, 10-, and 14-days post-SCI. RESULTS: LT treatment reduced NO and MDA levels, increased antioxidative strength, and markedly suppressed the levels of neuroinflammatory and apoptotic markers in the spinal cord after SCI. Moreover, LT treatment drastically promoted the recovery of behavioral motor functions post-SCI. CONCLUSION: Our findings revealed that LT can enhance the recovery of behavioral motor functions after SCI in rats, which related to the suppression of post-traumatic oxidative response, neural inflammation, and apoptosis. This evidence indicates that LT holds considerable potential for use in the clinical treatment/prevention of SCI-induced motor dysfunction.


Assuntos
Glutamatos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Traumatismos da Medula Espinal , Animais , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/tratamento farmacológico
16.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795225

RESUMO

The development of a novel alloplastic graft with both osteoinductive and osteoconductive properties is still necessary. In this study, we tried to synthesize a biomimetic hydroxyapatite microspheres (gelatin/nano-hydroxyapatite microsphere embedded with stromal cell-derived factor-1: GHM-S) from nanocrystalline hydroxyapatites and to investigate their therapeutic potential and effects on bone regeneration. In this study, hydroxyapatite was synthesized by co-precipitation of calcium hydroxide and orthophosphoric acid to gelatin solution. The microbial transglutaminase was used as the agent to crosslink the microspheres. The morphology, characterization, and thermal gravimetric analysis of microspheres were performed. SDF-1 release profile and in vitro biocompatibility and relative osteogenic gene expression were analyzed, followed by in vivo micro-computed tomography study and histological analysis. The synthesized hydroxyapatite was found to be similar to hydroxyapatite of natural bone tissue. The stromal cell-derived factor-1 was embedded into gelatin/hydroxyapatite microsphere to form the biomimetic hydroxyapatite microsphere. The stromal cell-derived factor-1 protein could be released in a controlled manner from the biomimetic hydroxyapatite microsphere and form a concentration gradient in the culture environment to attract the migration of stem cells. Gene expression and protein expression indicated that stem cells could differentiate or develop into pre-osteoblasts. The effect of bone formation by the biomimetic hydroxyapatite microsphere was assessed by an in vivo rats' alveolar bone defects model and confirmed by micro-CT imaging and histological examination. Our findings demonstrated that the biomimetic hydroxyapatite microsphere can enhance the alveolar bone regeneration. This design has potential be applied to other bone defects.


Assuntos
Materiais Biomiméticos/química , Regeneração Óssea/efeitos dos fármacos , Durapatita/química , Nanocompostos/química , Animais , Materiais Biomiméticos/farmacologia , Células Cultivadas , Quimiocina CXCL12/administração & dosagem , Quimiocina CXCL12/farmacologia , Gelatina/química , Humanos , Microesferas , Ratos
17.
Polymers (Basel) ; 11(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547022

RESUMO

Molar pits and fissures tend to be affected by caries due to cleaning difficulties. As such, the filling of pits and cracks with sealants is common to deter the onset of caries. However, current clinical practices rely on sealants that lack the ability to release and recharge fluoride ions. Thus, we herein report the development of a fluoride-montmorillonite nanocomposite resin that has the potential to provide sustained release of fluoride due to the strong adsorption of fluoride by montmorillonite. X-ray diffractometry, thermogravimetric analysis, and Fourier-transform infrared spectroscopy were employed to confirm the successful insertion of the polymer into the interlayer structure. The mechanical properties (viscosity, hardening depth, hardness, diametral tensile strength, flexural strength, and wear resistance) of the developed composite resin were then examined, and simulation of the oral environment demonstrated a good fluoride ion release and recharge ability for the effective prevention of dental caries. Finally, we demonstrated the non-cytotoxic nature of this material using the water-soluble tetrazolium salt (WST-1) test. We expect that the described fluoride-containing composite resin may become a new clinical option in the near future.

18.
J Orthop Surg Res ; 14(1): 162, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142377

RESUMO

BACKGROUND: Polymethylmethacrylate bone cement has a variety of applications in orthopedic surgery, but it also has some shortcomings such as high heat generation during polymerization and poor integration with bone tissue. In this study, a bio-composite bone cement composed of tri-calcium phosphate and chitosan as additives to acrylic bone cement was developed. Our hypothesis is that this new bio-composite bone cement has a better osteo-integration than pure polymethyl methacrylate cement. METHODS: Physiological composition, i.e., 65 wt% inorganic and 35 wt% organic components, of tri-calcium phosphate and chitosan contents was selected as degradable additives to replace acrylic bone cement. A series of properties such as exothermic temperature changes, setting time, bio-mechanical characteristics, degradation behaviors, and in vitro cytotoxicity were examined. Preliminary in vivo animal study was also performed. RESULTS: The results showed that the bio-composite bone cement exhibited lower curing temperature, longer setting time, higher weight loss and porosity after degradation, lower compressive Young's modulus, and ultimate compressive strength as compared with those of pure polymethyl methacrylate cement. Cell proliferation tests demonstrated that the bio-composite bone cement was non-cytotoxic, and the in vivo tests revealed that was more osteo-conductive. CONCLUSIONS: The results indicated that the modified chitosan/tri-calcium phosphate/polymethyl methacrylate bio-composites bone cement could be degraded gradually and create rougher surfaces that would be beneficial to cell adherence and growth. This new bio-composite bone cement has potential in clinical application. Our future studies will focus on long-term implantation to investigate the stability of the bio-composite bone cement in long-term implantation.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Cimentos Ósseos/farmacologia , Osso e Ossos/efeitos dos fármacos , Fosfatos de Cálcio/administração & dosagem , Quitosana/administração & dosagem , Animais , Materiais Biocompatíveis/metabolismo , Cimentos Ósseos/metabolismo , Osso e Ossos/metabolismo , Fosfatos de Cálcio/metabolismo , Linhagem Celular , Quitosana/metabolismo , Força Compressiva/efeitos dos fármacos , Força Compressiva/fisiologia , Teste de Materiais/métodos , Camundongos , Ratos , Ratos Sprague-Dawley
19.
Histol Histopathol ; 33(12): 1271-1286, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29905361

RESUMO

OBJECTIVE: With the goal to explore a new approach to treat the early degenerative lesions of hyaline cartilage, we implanted in a porcine OA model a collagen-based scaffold containing chondroprogenitor cells derived from human bone marrow mesenchymal stem cells (hBM-MSCs). EXPERIMENTAL DESIGN: Porcine knee joints were subjected to anterior cruciate ligament (ACL) transection to surgically induce OA. After 4 months, the time necessary for the development of cartilage surface damage, animals were treated either with trephination bone plug wrapped with the chondroprogenic hBM-MSCs-embedded collagen scaffold or microfractures alone. Histological and histomorphometric evaluations were performed at 5 months after surgery. RESULTS: All animals subjected to ACL transection showed osteoarthritic changes including mild lateral femoral condyle or moderate medial femoral condyle ulcerations. After 14 days' chondrogenic induction, hBM-MSCs seeded onto the scaffold showed expression of chondroprogenitor markers such as SOX9 and COMP. At 5 months after the implantation, significant differences in the quality of the regenerated tissue were found between the hBM-MSCs-embedded scaffold group and the control group. Newly generated tissue was only observed at the site of implantation with the hBM-MSCs-embedded scaffolds. Furthermore, histological examination of the generated tissue revealed evidence of cartilage-like tissue with lacuna formation. In contrast, fibrous layers or fissures were formed on the surface of the control knee joint. CONCLUSIONS: This study shows that xenogenic hBM-MSC derived chondroprogenitor scaffolds can generate new cartilage tissue in porcine articular cartilage and have the potential as a useful treatment option for osteoarthritis.


Assuntos
Colágeno , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Cartilagem Articular , Condrogênese/fisiologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Suínos
20.
BMC Infect Dis ; 17(1): 516, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743235

RESUMO

BACKGROUND: When bacteria colony persist within a biofilm, suitable drugs are not yet available for the eradication of biofilm-producing bacteria. The aim of this study is to study the effect of magnetic nano-particles-induced hyperthermia on destroying biofilm and promoting bactericidal effects of antibiotics in the treatment of osteomyelitis. METHODS: Sixty 12-weeks-old male Wistar rats were used. A metallic 18G needle was implanted into the bone marrow cavity of distal femur after the injection of Methicillin-sensitive Staphylococcus aureus (MSSA). All animals were divided into 5 different treatment modalities. The microbiological evaluation, scanning electron microscope examination, radiographic examination and then micro-CT evaluation of peri-implant bone resorption were analyzed. RESULTS: The pathomorphological characteristics of biofilm formation were completed after 40-days induction of osteomyelitis. The inserted implants can be heated upto 75 °C by magnetic heating without any significant thermal damage on the surrounding tissue. We also demonstrated that systemic administration of vancomycin [VC (i.m.)] could not eradicate the bacteria; but, local administration of vancomycin into the femoral canal and the presence of magnetic nanoparticles hyperthermia did enhance the eradication of bacteria in a biofilm-based colony. In these two groups, the percent bone volume (BV/TV: %) was significantly higher than that of the positive control. CONCLUSIONS: For the treatment of chronic osteomyelitis, we developed a new modality to improve antibiotic efficacy; the protection effect of biofilms on bacteria could be destroyed by magnetic nanoparticles-induced hyperthermia and therapeutic effect of systemic antibiotics could be enhanced.


Assuntos
Antibacterianos/farmacologia , Hipertermia Induzida/métodos , Osteomielite/terapia , Infecções Relacionadas à Prótese/terapia , Infecções Estafilocócicas/terapia , Animais , Biofilmes , Hipertermia Induzida/instrumentação , Nanopartículas de Magnetita , Masculino , Staphylococcus aureus Resistente à Meticilina , Osteomielite/microbiologia , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA