Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biosens Bioelectron ; 262: 116554, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971038

RESUMO

Bradyarrhythmia, a life-threatening cardiovascular disease, is an increasing burden for the healthcare system. Currently, surgery, implanted device, and drug are introduced to treat the bradyarrhythmia in clinical practice. However, these conventional therapeutic strategies suffer from the invasive surgery, power supply, or drug side effect, respectively, hence developing the alternative therapeutic strategy is necessarily imperative. Here, a convenient and effective strategy to treat the bradyarrhythmia is proposed using near-infrared-triggered Au nanorod (NR) based plasmonic photothermal effect (PPE). Moreover, electrophysiology of cardiomyocytes is dynamically monitored by the integrated biosensing-regulating system during and after the treatment. Cardiomyocyte-based bradyarrhythmia recover rhythmic for a long time by regulating plasmonic photothermal effect. Furthermore, the regulatory mechanism is qualitatively investigated to verify the significant thermal stimulation in the recovery process. This study establishes a reliable platform for long-term recording and evaluation of mild photothermal therapy for bradyarrhythmia in vitro, offering an efficient and non-invasive strategy for the potential clinical applications.

2.
ACS Nano ; 18(24): 15332-15357, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837178

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.


Assuntos
Miócitos Cardíacos , Humanos , Fenômenos Eletrofisiológicos , Animais
3.
Nanomicro Lett ; 16(1): 132, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411852

RESUMO

The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.

4.
Biosens Bioelectron ; 246: 115860, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039735

RESUMO

Action potentials play a pivotal role in diverse cardiovascular physiological mechanisms. A comprehensive understanding of these intricate mechanisms necessitates a high-fidelity intracellular electrophysiological investigative approach. The amalgamation of micro-/nano-electrode arrays and electroporation confers substantial advantages in terms of high-resolution intracellular recording capabilities. Nonetheless, electroporation systems typically lack precise control, and commonly employed electroporation modes, involving tailored sequences, may escalate cellular damage and perturbation of normal physiological functions due to the multiple or higher-intensity electrical pulses. In this study, we developed an innovative electrophysiological biosensing system customized to facilitate precise single-pulse electroporation. This advancement serves to achieve optimal and uninterrupted intracellular action potential recording within cardiomyocytes. The refinement of the single-pulse electroporation technique is realized through the integration of the electroporation and assessment biosensing system, thereby ensuring a consistent and reliable means of achieving stable intracellular access. Our investigation has unveiled that the optimized single-pulse electroporation technique not only maintains robust biosafety standards but also enables the continuous capture of intracellular electrophysiological signals across an expansive three-day period. The universality of this biosensing system, adaptable to various micro/nano devices, furnishes real-time analysis and feedback concerning electroporation efficacy, guaranteeing the sustained, secure, and high-fidelity acquisition of intracellular data, thereby propelling the field of cardiovascular electrophysiological research.


Assuntos
Técnicas Biossensoriais , Miócitos Cardíacos , Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Contenção de Riscos Biológicos , Eletroporação
5.
Nano Lett ; 23(24): 11850-11859, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38051785

RESUMO

Cardiac oxidative stress is a significant phenotype of myocardial infarction disease, a leading cause of global health threat. There is an urgent need to develop innovative therapies. Nanosized extracellular vesicle (nEV)-based therapy shows promise, yet real-time monitoring of cardiomyocyte responses to nEVs remains a challenge. In this study, a dynamic and label-free cardiomyocyte biosensing system using microelectrode arrays (MEAs) was constructed. Cardiomyocytes were cultured on MEA devices for electrophysiological signal detection and treated with nEVs from E. coli, gardenia, HEK293 cells, and mesenchymal stem cells (MSC), respectively. E. coli-nEVs and gardenia-nEVs induced severe paroxysmal fibrillation, revealing distinct biochemical communication compared to MSC-nEVs. Principal component analysis identified variations and correlations between nEV types. MSC-nEVs enhanced recovery without inducing arrhythmias in a H2O2-induced oxidative stress injury model. This study establishes a fundamental platform for assessing biochemical communication between nEVs and cardiomyocytes, offering new avenues for understanding nEVs' functions in the cardiovascular system.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Humanos , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Escherichia coli , Arritmias Cardíacas , Estresse Oxidativo
6.
Nano Lett ; 23(24): 11884-11891, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064276

RESUMO

Nanostructures are powerful components for the development of high-performance nanodevices. Revealing and understanding the cell-nanostructure interface are essential for improving and guiding nanodevice design for investigations of cell physiology. For intracellular electrophysiological detection, the cell-nanostructure interface significantly affects the quality of recorded intracellular action potentials and the application of nanodevices in cardiology research and pharmacological screening. Most of the current investigations of biointerfaces focus on nanovertical structures, and few involve nanoconcave structures. Here, we design both nanoconvex and nanoconcave devices to perform intracellular electrophysiological recordings. The amplitude, signal-to-noise ratio, duration, and repeatability of the recorded intracellular electrophysiological signals provide a multifaceted characterization of the cell-nanostructure interface. We demonstrate that devices based on both convex and concave nanostructures can create tight coupling, which facilitates high-quality and stable intracellular recordings and paves the way for precise electrophysiological study.


Assuntos
Miócitos Cardíacos , Nanoestruturas , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Fenômenos Eletrofisiológicos
7.
Tree Physiol ; 43(8): 1444-1453, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37104646

RESUMO

GRAS transcription factors belong to the plant-specific protein family. They are not only involved in plant growth and development but also in plant responses to a variety of abiotic stresses. However, to date, the SCL32(SCARECROW-like 32) gene conferring the desired resistance to salt stresses has not been reported in plants. Here, ThSCL32, a homologous gene of ArabidopsisthalianaAtSCL32, was identified. ThSCL32 was highly induced by salt stress in Tamarix hispida. ThSCL32 overexpression in T. hispida gave rise to improved salt tolerance. ThSCL32-silenced T. hispida plants were more sensitive to salt stress. RNA-seq analysis of transient transgenic T. hispida overexpressing ThSCL32 revealed significantly enhanced ThPHD3 (prolyl-4-hydroxylase domain 3 protein) gene expression. ChIP-PCR further verified that ThSCL32 probably binds to the novel cis-element SBS (ACGTTG) in the promoter of ThPHD3 to activate its expression. In brief, our results suggest that the ThSCL32 transcription factor is involved in salt tolerance in T. hispida by enhancing ThPHD3 expression.


Assuntos
Tolerância ao Sal , Tamaricaceae , Tolerância ao Sal/genética , Tamaricaceae/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas
8.
Nano Lett ; 23(9): 4049-4057, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098848

RESUMO

Electroporation is a proven technique that can record action potential of cardiomyocytes and serve for biomolecular delivery. To ensure high cell viability, micro-nanodevices cooperating with low-voltage electroporation are frequently utilized in research, and the effectiveness of delivery for intracellular access is typically assessed using an optical imaging approach like flow cytometry. However, the efficiency of in situ biomedical studies is hampered by the intricacy of these analytical approaches. Here, we develop an integrated cardiomyocyte-based biosensing platform to effectively record action potential and evaluate the electroporation quality in terms of viability, delivery efficiency, and mortality. The ITO-MEA device of the platform possesses sensing/stimulating electrodes which combines with the self-developed system to achieve intracellular action potential recording and delivery by electroporation trigger. Moreover, the image acquisition processing system analyzes various parameters effectively to assess delivery performance. Therefore, this platform has the potential for drug delivery therapy and pathology research for cardiology.


Assuntos
Eletroporação , Miócitos Cardíacos , Terapia com Eletroporação , Eletrodos , Sobrevivência Celular
9.
Nano Lett ; 23(1): 243-251, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537828

RESUMO

Electrophysiology is a unique biomarker of the electrogenic cells that can perform a disease investigation or drug assessment. In the recent decade, vertical nanoelectrode arrays can successfully achieve a high-quality intracellular electrophysiological study in electrogenic cells and their networks. However, a high success rate and high-quality and long-term intracellular recording using low-cost nanostructures is still a considerable challenge. Herein, we develop a scalable and robust hollow nanopillar electrode to achieve enhanced intracellular recording of cardiomyocytes. The template-based synthesis of vertical hollow nanopillars is compatible with large-scale and efficient microfabrication processes and is convenient to regulate the geometry of hollow nanopillars. Compared with the conventional same-size planar electrode, the regulating height of a hollow nanopillar can achieve high-quality and prolonged intracellular recordings, which can improve the cell-electrode interface for tight coupling and effective electroporation. It is demonstrated that the geometry regulation of a nanostructure is a powerful strategy to enhance intracellular recording.


Assuntos
Nanoestruturas , Potenciais de Ação/fisiologia , Eletrodos , Nanoestruturas/química , Eletroporação , Miócitos Cardíacos/fisiologia
10.
Nano Lett ; 22(18): 7467-7476, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069674

RESUMO

Electrophysiological recording, as a long-sought objective, plays a crucial role in fundamental biomedical research and practical clinical applications. The challenge in developing electrophysiological detection platforms is to combine simplicity, stability, and sensitivity in the same device. In this study, we develop a nanotrapped microelectrode based on a porous PET membrane, which is compatible with large-scale microtechnologies. The nanotraps can promote the protrusion of the local cell membrane in the hollow center and offer a unique nanoedge structure for tight sealing and effective electroporation. We demonstrate that scalable nanotraps can enhance cell-electrode coupling and perform high-quality intracellular recording. Further, the nanoedge-enhanced electroporation and minimally invasive nanotrapped recordings afford much longer intracellular access of over 100 min and permit consecutive electroporation events in a short period of time. This study suggests that the geometry-regulating strategy of the cell-electrode nanointerface could significantly improve the intracellular recording performance of a nanopatterned electrode.


Assuntos
Fenômenos Eletrofisiológicos , Eletroporação , Potenciais de Ação/fisiologia , Membrana Celular/química , Microeletrodos
11.
Nanoscale Adv ; 4(8): 1844-1867, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133409

RESUMO

Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.

12.
Biosensors (Basel) ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884325

RESUMO

Cell perforation is a critical step for intracellular drug delivery and real-time biosensing of intracellular signals. In recent years, the nanostraws system has been developed to achieve intracellular drug delivery with minimal invasiveness to the cells. Repeated cell perforation via nano-system could allow delivery of multiple drugs into cells for cell editing, but the biosafety is rarely explored. In this work, a nanostraw-mediated nano-electroporation system was developed, which allowed repeated perforation of the same set of cells in a minimally invasive manner, while the biosafety aspect of this system was investigated. Highly controllable fabrication of Al2O3 nanostraw arrays based on a porous polyethylene terephthalate (PET) membrane was integrated with a microfluidic device to construct the nanostraw-electroporation system. The pulse conditions and intervals of nano-electroporation were systematically optimized to achieve efficient cells perforation and maintain the viability of the cells. The cells proliferation, the early apoptosis activities after nanostraw-electroporation and the changes of gene functions and gene pathways of cells after repeated nano-electroporation were comprehensively analyzed. These results revealed that the repeated nanostraw-electroporation did not induce obvious negative effects on the cells. This work demonstrates the feasibility of repeated nano-electroporation on cells and provides a promising strategy for future biomedical applications.


Assuntos
Nanoestruturas , Contenção de Riscos Biológicos , Eletroporação/métodos , Dispositivos Lab-On-A-Chip , Preparações Farmacêuticas
13.
Nanomicro Lett ; 14(1): 125, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35633391

RESUMO

Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.

14.
Plant Mol Biol ; 109(6): 689-702, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35486290

RESUMO

KEY MESSAGE: Construction of ML-hGRN for the salt pathway in Populus davidiana × P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus davidiana × P. bolleana under salt stress. Many woody plants, including Populus davidiana × P. bolleana, have made great contributions to human production and life. High salt is one of the main environmental factors that restricts the growth of poplar. This study found that high salt could induce strong biochemical changes in poplar. To detect the effect of salt treatment on gene expression, 18 libraries were sequenced on the Illumina sequencing platform. The results identified a large number of early differentially expressed genes (DEGs) and a small number of late DEGs, which indicated that most of the salt response genes of poplar were early response genes. In addition, 197 TFs, including NAC, ERF, and other TFs related to salt stress, were differentially expressed during salt treatment, which indicated that these TFs may play an important role in the salt stress response of poplar. Based on the RNA-seq analysis results, multilayered hierarchical gene regulatory networks (ML-hGRNs) of salt stress- and lignocellulosic synthesis-related DEGs were constructed using the GGM algorithm. The lignocellulosic synthesis regulatory network under salt stress revealed that lignocellulosic synthesis might play an important role in the process of salt stress resistance. Furthermore, the NAC family transcription factor PdbNAC83, which was found in the upper layer in both pathways, was selected to verify the accuracy of the ML-hGRNs. DAP-seq showed that the binding site of PdbNAC83 included a "TT(G/A)C(G/T)T" motif, and ChIP-PCR further verified that PdbNAC83 can regulate the promoters of at least six predicted downstream genes (PdbNLP2-2, PdbZFP6, PdbMYB73, PdbC2H2-like, PdbMYB93-1, PdbbHLH094) by binding to the "TT(G/A)C(G/T)T" motif, which indicates that the predicted regulatory network diagram obtained in this study is relatively accurate. In conclusion, a species-specific salt response pathway might exist in poplar, and this finding lays a foundation for further study of the regulatory mechanism of the salt stress response and provides new clues for the use of genetic engineering methods to create high-quality and highly resistant forest germplasms.


Assuntos
Populus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Lignina , Populus/genética , Populus/metabolismo , Estresse Salino/genética , Transcriptoma
15.
Biosens Bioelectron ; 209: 114252, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405502

RESUMO

In cardiac tissue engineering, electric stimulation is an efficient approach to improve the formation of cardiac tissue from individual cardiomyocyte. The regulation conditions of electric stimulation should be screened in an efficient way. However, the lack of high-throughput and large-scale assessment platforms limited the effectively screen the regulation conditions. Here, we develop a high-throughput integrated electrical stimulation system to rhythmically regulate the cardiomyocytes in situ. The state of regulated cardiomyocytes is characterized by a video-based automated biosensing system to analyze the beating of cardiomyocytes. Electrical stimulation conditions are optimized to regulate the cardiomyocyte state in vitro to replace the complex bioactive molecules and materials. By the video analysis, the accurate beating rate and regularity of cardiomyocyte can be determined. The results show that electrical stimulation frequency is a significant factor to regulate the cardiomyocyte beating. The electrical stimulation with a frequency of 3 Hz can effectively regulate the primary rat cardiomyocytes with normal rhythm. This high-throughput electrical stimulation and a video-based automated biosensing system will be a promising and powerful tool to effectively optimize the regulation conditions of cardiomyocyte in vitro, and possess broad application prospects in cardiac tissue engineering and pharmaceutical industry.


Assuntos
Técnicas Biossensoriais , Miócitos Cardíacos , Animais , Estimulação Elétrica , Ratos , Engenharia Tecidual
16.
Biosens Bioelectron ; 206: 114122, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245868

RESUMO

Intracellular recording of action potentials is an essential mean for studying disease mechanisms, and for electrophysiological studies, particularly in excitable cells as cardiomyocytes or neurons. Current strategies to obtain intracellular recordings include three-dimensional (3D) nanoelectrodes that can effectively penetrate the cell membrane and achieve high-quality intracellular recordings in a minimally invasive manner, or transient electroporation of the membrane that can yield temporary intracellular access. However, the former strategy requires a complicated and costly fabrication process, and the latter strategy suffers from high dependency on the method of application of electroporation, yielding inconsistent, suboptimal recordings. These factors hinder the high throughput use of these strategies in electrophysiological studies. In this work, we propose an advanced cell-based biosensing platform that relies on electroporation to produce consistent, high-quality intracellular recordings. The suggested universal system can be integrated with any electrode array, and it enables tunable electroporation with controllable pulse parameters, while the recorded potentials can be analyzed in real time to provide instantaneous feedback on the electroporation effectiveness. This integrated system enables the user to perform electroporation, record and assess the obtained signals in a facile manner, to ultimately achieve stable, reliable, intracellular recording. Moreover, the proposed platform relies on microelectrode arrays which are suited for large-scale production, and additional modules that are low-cost. Using this platform, we demonstrate the tuning of electroporation pulse width, pulse number, and amplitude, to achieve effective electroporation and high-quality intracellular recordings. This integrated platform has the potential to enable larger scale, repeatable, convenient, and low-cost electrophysiological studies.


Assuntos
Técnicas Biossensoriais , Potenciais de Ação/fisiologia , Eletroporação , Microeletrodos , Miócitos Cardíacos/fisiologia
17.
Nano Lett ; 22(6): 2479-2489, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35254073

RESUMO

New strategies for intracellular electrophysiology break the spatiotemporal limitation of the action potential and lead a notable advance in the investigation of electrically excitable cells and their network. Although successful applications of intracellular recording have been achieved by 3D micro/nanodevices, complex micro/nanofabrication processes preclude the progress of extensive applications. We address this challenge by introducing porous polyethylene terephthalate (PET) membrane to develop a new type of nanotemplate electrode. This nanotemplate electrode is manufactured following a fabrication process on a porous PET membrane by atomic layer deposition. The 3D nanotemplate electrodes afford intracellular access to cardiomyocytes to report intracellular-like action potentials. These controllable nanotemplate electrodes exhibit sensitive and prolonged intracellular recordings of action potentials compared with free-growing 3D nanoelectrodes. This study indicates that the optimized structure of the nanoelectrode significantly promotes the performance of intracellular recording to assess electrophysiology in the fields of cardiology and neuroscience at an action potential level.


Assuntos
Fenômenos Eletrofisiológicos , Polietilenotereftalatos , Potenciais de Ação/fisiologia , Eletrodos , Porosidade
18.
Research (Wash D C) ; 2022: 9854342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233537

RESUMO

Bradyarrhythmia is a kind of cardiovascular disease caused by dysregulation of cardiomyocytes, which seriously threatens human life. Currently, treatment strategies of bradyarrhythmia mainly include drug therapy, surgery, or implantable cardioverter defibrillators, but these strategies are limited by drug side effect, surgical trauma, and instability of implanted devices. Here, we developed an integrated Au-nanoroded biosensing and regulating platform to investigate the photothermal therapy of cardiac bradyarrhythmia in vitro. Au-nanoroded electrode array can simultaneously accumulate energy from the photothermal regulation and monitor the electrophsiological state to restore normal rhythm of cardiomyocytes in real time. To treat the cardiomyocytes cultured on Au-nanoroded device by near-infrared (NIR) laser irradiation, cardiomyocytes return to normal for long term after irradiation of suitable NIR energy and maintenance. Compared with the conventional strategies, the photothermal strategy is more effective and convenient to regulate the cardiomyocytes. Furthermore, mRNA sequencing shows that the differential expression genes in cardiomyocytes are significantly increased after photothermal strategy, which are involved in the regulation of the heart rate, cardiac conduction, and ion transport. This work establishes a promising integrated biosensing and regulating platform for photothermal therapy of bradyarrhythmia in vitro and provides reliable evidence of photothermal regulation on cardiomyocytes for cardiological clinical studies.

19.
Biosens Bioelectron ; 202: 114016, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091372

RESUMO

The electrophysiological study is an essential approach to perform the biology and basic medicine research. To achieve the intracellular electrophysiological investigation, electroporation is introduced as an effective and convenient strategy to achieve the intracellular access of electrogenic cells and obtain high-fidelity action potentials. However, seldom platform could provide a quantitative and dynamic strategy to assess the electroporation-induced membrane perforation and recovery during intracellular electrophysiological investigation. Here we develop a high-throughput, sensitive, and stable biosensing platform to assess the evolution of electroporated cell membrane dynamically and quantitatively based on the recorded intracellular electrophysiological signals of cardiomyocytes. Following the electroporation, the extracellular action potentials transiently convert to the intracellular action potentials, whose amplitude rapidly increases to the maximum and then gradually decays. The intracellular action potentials finally convert back to the extracellular action potentials. This biosensing platform can dynamically explore and characterize the evolution procedures of perforation, stabilization, and resealing of the cell membrane by intracellular recordings. Moreover, the effect of electroporation voltages on the cell membrane is segmentally and quantitatively analyzed, demonstrating that a higher electroporation voltage induced a longer resealing time within the safe range of electroporation voltage. We believed that this dynamic and quantitative electroporated membrane evolution biosensing assessment platform will be a promising tool to pave a new avenue to bridge the electrophysiology and electroporated membrane evolution.


Assuntos
Técnicas Biossensoriais , Miócitos Cardíacos , Potenciais de Ação/fisiologia , Fenômenos Eletrofisiológicos , Eletroporação , Miócitos Cardíacos/fisiologia
20.
Microsyst Nanoeng ; 7: 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567738

RESUMO

Cardiovascular disease (CVD) is the number one cause of death in humans. Arrhythmia induced by gene mutations, heart disease, or hERG K+ channel inhibitors is a serious CVD that can lead to sudden death or heart failure. Conventional cardiomyocyte-based biosensors can record extracellular potentials and mechanical beating signals. However, parameter extraction and examination by the naked eye are the traditional methods for analyzing arrhythmic beats, and it is difficult to achieve automated and efficient arrhythmic recognition with these methods. In this work, we developed a unique automated template matching (ATM) cardiomyocyte beating model to achieve arrhythmic recognition at the single beat level with an interdigitated electrode impedance detection system. The ATM model was established based on a rhythmic template with a data length that was dynamically adjusted to match the data length of the target beat by spline interpolation. The performance of the ATM model under long-term astemizole, droperidol, and sertindole treatment at different doses was determined. The results indicated that the ATM model based on a random rhythmic template of a signal segment obtained after astemizole treatment presented a higher recognition accuracy (100% for astemizole treatment and 99.14% for droperidol and sertindole treatment) than the ATM model based on arrhythmic multitemplates. We believe this highly specific ATM method based on a cardiomyocyte beating model has the potential to be used for arrhythmia screening in the fields of cardiology and pharmacology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA