Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolites ; 13(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110226

RESUMO

This study aimed to investigate the effect of Grape Seed Proanthocyanidin (GSP) on fat metabolism and adipocytokines in obese rats. Fifty 5-week-old rats were randomly assigned to five groups (n = 10 per group) and given either a basal diet, a high-fat diet, or a high-fat diet supplemented with GSP (25, 50, and 100 mg/d) per group. The experiment lasted for five weeks, including a one-week adaptation period and a four-week treatment period. At the end of the experimental period, serum and adipose tissue samples were collected and analyzed. Additionally, we co-cultured 3T3-L1 preadipocytes with varying concentrations of GSP to explore its effect on adipocyte metabolism. The results demonstrated that GSP supplementation reduced weight, daily gain, and abdominal fat weight coefficient (p < 0.05). It also decreased levels of glucose, cholesterol (TC) (p < 0.05), triglycerides (TG) (p < 0.05), low-density lipoprotein (LDL), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in adipose tissue. Furthermore, GSP addition caused adipocyte crumpling in vitro and reduced the mRNA expression of COX-2, LEP, and TNF-α in adipocytes in vitro. These findings provide compelling evidence for exploring the role of GSP in the prevention and treatment of obesity and related diseases.

2.
Antioxidants (Basel) ; 11(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35326119

RESUMO

The dual stress of reduced feed intake and increased milk yield in dairy cows early postpartum results in a negative energy balance. Rumen-protected glucose (RPG) has been reported to replenish energy, increase milk yield, and improve gut health. However, early postpartum cows often develop an insulin resistance, implying that RPG may not be well utilized and increased milk production may increase the liver's fat oxidization burden. This study aimed to investigate the effects of RPG on the hepatic oxidative/antioxidative status and protein profile. Starting 7 d before expected calving, six pairs of cows were supplemented with rumen-protected glucose (RPG, n = 6) or with an equal amount of rumen-protecting coating fat (CON, n = 6). Liver samples were obtained from 10 cows 14 d after calving (d 14). Concentration of malondialdehyde and activity of glutathione peroxidase were increased and the activities of catalase and superoxide dismutase tended to increase in the livers of the RPG cows compared to the CON cows. The revised quantitative insulin sensitivity check index (RQUICKI) was decreased by RPG, but triacylglycerol concentration in liver was increased by RPG supplementation. The overall profiles of hepatic proteins were similar between CON and RPG. A partial least square regression was conducted to identify the proteins associated with liver lipidosis, oxidative stress, and antioxidative capacity. The top twenty proteins, according to their variable importance value, were selected for metabolic pathway enrichment analysis. Eighteen enriched KEGG pathways were identified, including metabolism, the citrate cycle, propanoate metabolism, the peroxisome, and type II diabetes mellitus. Our study showed that RPG supplementation reduced insulin sensitivity but increased the liver triglyceride concentration and the oxidative stress in early postpartum cows. Liver proteins related to lipidosis, oxidative stress, and antioxidative capacity, were positively associated with the glutamine metabolism, citric acid cycle, peroxisome, and type II diabetes pathways, which may indicate an increased risk of liver metabolic disorders caused by RPG supplementation in early postpartum cows.

3.
Anim Biosci ; 34(11): 1784-1793, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33561328

RESUMO

OBJECTIVE: An experiment was conducted to evaluate the effects of bamboo leaf extract (BLE) on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. METHODS: The experiment comprised a 14-day adaptation period and a 21-day experimental period and was conducted in a high-temperature and humidity environment (daily mean ambient temperature = 33.5°C±1.3°C; daily mean relative humidity = 64.9%±0.8%, daily mean temperature-humidity index = 86.2±0.4). Twelve Holstein dairy cows were randomly allocated into two groups. A total mixed ration supplemented with BLE at 0 (CON) and 1.3 g/kg dry matter (DM) were fed, respectively. Feed intake and milk yield were recorded daily. Milk samples were collected on 1, 11, and 21 d of the experimental period to analyze milk performance. Rumen fluid samples were collected on 21 d of the experimental period to analyze rumen fermentation parameters and rumen bacterial communities. RESULTS: Compared with the control group, supplementation of BLE increased milk yield (p<0.01), milk fat yield (p = 0.04), 4% fat-corrected milk (p<0.01) and milk fat content (p<0.01); reduced somatic cell count (p<0.01). No differences in DM intake and milk protein or lactose content were observed between two groups. Supplementation of BLE also increased the rumen total volatile fatty acid (p<0.01), acetate (p<0.01), butyrate (p<0.01), and valerate (p = 0.05) concentrations. However, no significant effects were observed on rumen pH, ammonia nitrogen, propionate, acetate/propionate ratio, isobutyrate, or isovalerate. Furthermore, BLE increased the rumen bacterial abundance and the diversity of the rumen bacterial community. The BLE reduced the Firmicutes/Bacteroidetes abundance ratio and increased the abundances of Butyrivibrio_2 (p<0.01) and Ruminococcus_2 (p<0.01). CONCLUSION: The BLE supplementation at 1.3 g/kg DM could improve production performance and rumen fermentation in dairy cows during heat stress.

4.
J Anim Physiol Anim Nutr (Berl) ; 104(4): 1178-1185, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189416

RESUMO

This study was conducted to investigate the effect of grape seed procyanidins (GSP) on growth performance, digestive enzyme activity, antioxidant enzyme activity and mRNA expression in weanling piglets. A total of 96 piglets (Pietrain × Large White) with an average initial body weight (BW) of 8.4 ± 1.7 kg were weaned at 28 days, and randomly divided into 4 groups. Four groups of animals were fed with a basic diet supplemented with various doses of GSP (0, 40, 70 and 100 mg/kg respectively) during the 28-day treatment period. The results showed that the group receiving 40 mg/kg GSP significantly increased the average daily gain (ADG, p < .05) and decrease the feed/gain ratio (F/G, p < .05). Interestingly, the incidence of diarrhoea was significantly reduced in the groups of 40 and 70 mg/kg GSP, but it was increased in the group of 100 mg/kg GSP. Subsequent biochemical studies indicated that dietary GSP significantly increased the activities of digestive enzymes and antioxidant enzymes, including amylase (Amy), lipase(LPS, p < .05), glutathione peroxidase activity (GSH-Px, p < .05), superoxide dismutase activity (SOD, p < .05) and total antioxidant capacity (T-AOC, p < .05) in serum, liver and muscle, increased the expression of GSH-Px, SOD and CAT genes (p < .05) in the liver, and decreased the level of malondialdehyde (MDA, p < .05) in serum, liver and muscle. Taken together, these studies revealed that low GSP supplement in diets can improve growth performance of weaned piglets, which is associated with increased digestive and antioxidant enzyme activities and enhanced resistance to weanling stress.


Assuntos
Antioxidantes/metabolismo , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Suínos/fisiologia , Desmame , Animais , Diarreia/prevenção & controle , Diarreia/veterinária , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , RNA Mensageiro/genética , Suínos/metabolismo , Doenças dos Suínos/prevenção & controle
5.
J Anim Sci ; 96(8): 3460-3470, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29860505

RESUMO

The objective of this study was to evaluate antimethanogenic activity of eucalyptus oil (EUC) and anise oil (ANI) in vitro and in vivo using sheep as a model. In vitro study was conducted using batch culture technique, each of EUC and ANI were added at 0, 50, 100, 200, or 400 mg/L of fermentation media with substrate containing 60% corn-based concentrate and 40% hay (DM basis). Total gas production (GP) linearly (P < 0.01) decreased with increasing ANI, whereas the GP was not affected with EUC addition. Supplementation of ANI and EUC linearly (P < 0.01) decreased total methane production and methane proportion in total gas. Total VFA and ammonia-nitrogen (NH3-N) concentration linearly (P < 0.01) decreased with increasing ANI supplementation. For the in vivo study, a replicated 3 × 3 Latin square design was carried out using six ruminal cannulated Du Han hybrid sheep (BW, 64.5 ± 8.56 kg) with 22 d of periods. Three treatments were control diet (consisted of 60% corn-based concentrate and 40% Chinese wildrye hay), EUC (control diet supplemented with 0.5 g EUC/d per head), and ANI (control diet supplemented with 0.5 g ANI/d per head). Each period consisted of 14 d for adaption and 8 d for sampling and data collection. Supplementation of EUC and ANI had no effects on feed intake and apparent nutrient digestibility. Ruminal NH3-N concentration was greater with EUC (P < 0.01) and ANI (P = 0.03) than control. Urinal allantoin output was less (P < 0.05) in sheep fed EUC and ANI than control animals. Methane emission was less (P = 0.03) in sheep fed ANI than sheep fed EUC, and a tendency of decrease for an eduction in this parameter was found for sheep fed with ANI (P = 0.08) compared to control. The in vitro results indicated a reduction of methane production with both EUC and ANI but in a dose-dependant manner. Supplementation of ANI tended to reduce ruminal methane production without adversely affecting rumen fermentation characteristics, nutrient intake, and digestibility, suggesting potential inhibition of ruminal methane emission in sheep supplemented with ANI.


Assuntos
Suplementos Nutricionais , Óleo de Eucalipto/farmacologia , Metano/metabolismo , Pimpinella/química , Óleos de Plantas/farmacologia , Ovinos/fisiologia , Amônia/análise , Ração Animal , Animais , Dieta/veterinária , Digestão/efeitos dos fármacos , Ingestão de Energia , Fermentação/efeitos dos fármacos , Distribuição Aleatória , Rúmen/metabolismo , Zea mays
6.
Curr Protein Pept Sci ; 18(6): 541-547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27356933

RESUMO

Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension.


Assuntos
Encéfalo/fisiologia , Trato Gastrointestinal/fisiologia , Glucose/metabolismo , Homeostase , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/microbiologia , Digestão , Metabolismo Energético , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos , Hipertensão/metabolismo , Hipertensão/microbiologia , Obesidade/metabolismo , Obesidade/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA