Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39331630

RESUMO

Platelet acts as a crucial monitoring indicator for hypercoagulability and thrombosis and a key target for drug regulation. Genotype-phenotype association studies have confirmed that platelet traits are quantitatively regulated by multiple genes. However, there is currently a lack of genetic studies on the heterogeneity of platelet traits in ß-thalassemia under hypercoagulable state. Here, we studied the phenotypic heterogeneity of platelet count (PLT) and mean platelet volume (MPV) in 1020 ß-thalassemia patients. We further performed a functionally informed whole genome sequencing association analysis of common variants and rare variants (RVs) for PLT and MPV in 916 patients through integrative analysis of whole-genome sequencing data and functional annotation data. Extreme phenotypic heterogeneity of platelet traits was observed in ß-thalassemia patients. Additionally, the common variant based gene-level analysis identified the novel gene of RNF144B associated with MPV. The RV analysis identified several novel associations in both coding and noncoding genome, including missense RVs of PPP2R5C associated with PLT and missense RVs of TSSK1B associated with MPV. In conclusion, we performed a comprehensive and systematic whole genome scan of platelet traits in the ß-thalassemia cohort, demonstrating the specificity of genetic regulation of platelet traits in the context of ß-thalassemia, providing potential targets for intervention.

2.
Geriatr Nurs ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322459

RESUMO

OBJECTIVE: The primary objective of this study was to examine the dyadic relationships between perceived social support, sense of coherence (SOC), and psychological distress in advanced lung cancer patients and their spousal caregivers with the dyadic analysis method. METHODS: 302 dyads of patients and their spouses were recruited between April 2023 to October 2023 from a Chinese tertiary hospital. Participants' perceived social support, SOC, and psychological distress were evaluated by corresponding questionnaires. In order to explore the potential dyadic associations between the covariates, the data were analyzed by adopting the actor-partner interdependence mediation model (APIMeM). RESULTS: The findings demonstrated that the impact of perceived social support on psychological distress had both actor and partner effects. Specifically, the perceived social support of patients and their spouses was directly and positively associated with their own psychological distress. Furthermore, in patient-spouse dyads, SOC mediated the actor effects of perceived social support on psychological distress. Another important finding was that perceived social support by spouse had a direct or indirect negative partner effect on the psychological distress of patients. CONCLUSION: The investigation uncovered a dyadic interdependence between perceived social support, psychological distress, and SOC. It is necessary for medical professionals to identify patients and spouses who report poor levels of SOC and perceived social support and implement targeted interventions to address these concerns.

3.
JCI Insight ; 9(17)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088281

RESUMO

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.


Assuntos
Anemia de Diamond-Blackfan , Proteínas Ribossômicas , Peixe-Zebra , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Humanos , Peixe-Zebra/genética , Animais , Masculino , Feminino , Linhagem , Haploinsuficiência
4.
Eur J Oncol Nurs ; 72: 102677, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39033557

RESUMO

OBJECTIVES: To examine the relationship between self-disclosure, social support, and psychological distress among caregivers of patients with advanced lung cancer, the study also examined the factors that impact psychological distress and the effect of social support on the relationship between self-disclosure and psychological distress. METHODS: A total of 288 caregivers of patients with advanced lung cancer were selected using a convenience sampling method from December 2022 to July 2023 at a tertiary hospital in China. Participants' self-disclosure, perceived social support, and psychological distress were assessed by corresponding questionnaires, respectively. Mediating effects were detected using Amos 26.0 software. RESULTS: The total scores for psychological distress, perceived social support, and self-disclosure of caregivers were 28.62 ± 6.45, 55.22 ± 7.81, and 38.39 ± 5.64, respectively. Correlation analysis suggested that psychological distress in caregivers was negatively correlated with both perceived social support and self-disclosure. Multiple linear regression analyses revealed that self-disclosure and perceived social support were influential factors of caregivers' psychological distress. Moreover, perceived social support partially mediated the relationship between self-disclosure and psychological distress, accounting for 54.37% of the total effect. CONCLUSION: Caregivers of patients with advanced lung cancer experience significant psychological distress. Self-disclosure can affect caregivers' psychological distress directly and indirectly through perceived social support. Healthcare professionals should be attentive to caregivers' psychological distress and carry out relevant nursing measures to improve caregivers' self-disclosure and social support to promote their physical and mental health.


Assuntos
Cuidadores , Neoplasias Pulmonares , Angústia Psicológica , Autorrevelação , Apoio Social , Humanos , Masculino , Feminino , Neoplasias Pulmonares/psicologia , Pessoa de Meia-Idade , Cuidadores/psicologia , China , Adulto , Inquéritos e Questionários , Idoso , Estresse Psicológico , Estudos Transversais
5.
HGG Adv ; 5(4): 100325, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993112

RESUMO

Small insertions and deletions (indels) are critical yet challenging genetic variations with significant clinical implications. However, the identification of pathogenic indels from neutral variants in clinical contexts remains an understudied problem. Here, we developed INDELpred, a machine-learning-based predictive model for discerning pathogenic from benign indels. INDELpred was established based on key features, including allele frequency, indel length, function-based features, and gene-based features. A set of comprehensive evaluation analyses demonstrated that INDELpred exhibited superior performance over competing methods in terms of computational efficiency and prediction accuracy. Importantly, INDELpred highlighted the crucial role of function-based features in identifying pathogenic indels, with a clear interpretability of the features in understanding the disease-causing variants. We envisage INDELpred as a desirable tool for the detection of pathogenic indels within large-scale genomic datasets, thereby enhancing the precision of genetic diagnoses in clinical settings.


Assuntos
Mutação INDEL , Aprendizado de Máquina , Mutação INDEL/genética , Humanos , Genoma Humano/genética , Frequência do Gene , Biologia Computacional/métodos , Genômica/métodos , Software
6.
Aging Cell ; 22(12): e14028, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38015106

RESUMO

Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.


Assuntos
Microbioma Gastrointestinal , Humanos , Idoso , China , Metaboloma , Envelhecimento , Biomarcadores , Rim
7.
Cell Discov ; 9(1): 75, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479695

RESUMO

Ischemic stroke is a leading cause of global mortality and long-term disability. However, there is a paucity of whole-genome sequencing studies on ischemic stroke, resulting in limited knowledge of the interplay between genomic and phenotypic variations among affected patients. Here, we outline the STROMICS design and present the first whole-genome analysis on ischemic stroke by deeply sequencing and analyzing 10,241 stroke patients from China. We identified 135.59 million variants, > 42% of which were novel. Notable disparities in allele frequency were observed between Chinese and other populations for 89 variants associated with stroke risk and 10 variants linked to response to stroke medications. We investigated the population structure of the participants, generating a map of genetic selection consisting of 31 adaptive signals. The adaption of the MTHFR rs1801133-G allele, which links to genetically evaluated VB9 (folate acid) in southern Chinese patients, suggests a gene-specific folate supplement strategy. Through genome-wide association analysis of 18 stroke-related traits, we discovered 10 novel genetic-phenotypic associations and extensive cross-trait pleiotropy at 6 lipid-trait loci of therapeutic relevance. Additionally, we found that the set of loss-of-function and cysteine-altering variants present in the causal gene NOTCH3 for the autosomal dominant stroke disorder CADASIL displayed a broad neuro-imaging spectrum. These findings deepen our understanding of the relationship between the population and individual genetic layout and clinical phenotype among stroke patients, and provide a foundation for future efforts to utilize human genetic knowledge to investigate mechanisms underlying ischemic stroke outcomes, discover novel therapeutic targets, and advance precision medicine.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37414573

RESUMO

BACKGROUND AND OBJECTIVES: Neuromyelitis optica spectrum disorders (NMOSD) is widely recognized as a CNS demyelinating disease associated with AQP4-IgG (T cell-dependent antibody), and its trigger is still unclear. In addition, although the treatment of NMOSD currently can rely on traditional immunosuppressive and modulating agents, effective methods to predict the efficacy of these therapeutics are lacking. METHODS: In this study, high-throughput T-cell receptor (TCR) sequencing was performed on peripheral blood from 151 pretreatment patients with AQP4-IgG+ NMOSD and 151 healthy individuals. We compared the TCR repertoire of those with NMOSD with that of healthy individuals and identified TCR clones that were significantly enriched in NMOSD. In addition, we treated 28 patients with AQP4-IgG+ NMOSD with immunosuppressants and followed up for 6 months to compare changes in NMOSD-specific TCRs (NMOSD-TCRs) before and after treatment. Moreover, we analyzed transcriptome and single-cell B-cell receptor (BCR) data from public databases and performed T-cell activation experiments using antigenic epitopes of cytomegalovirus (CMV) to further explore the triggers of AQP4-IgG+ NMOSD. RESULTS: Compared with healthy controls, patients with AQP4-IgG+ NMOSD had significantly reduced diversity and shorter CDR3 length of TCRß repertoire. Furthermore, we identified 597 NMOSD-TCRs with a high sequence similarity that have the potential to be used in the diagnosis and prognosis of NMOSD. The characterization of NMOSD-TCRs and pathology-associated clonotype annotation indicated that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection, which was further corroborated by transcriptome and single-cell BCR analysis results from public databases and T-cell activation experiments. DISCUSSION: Our findings suggest that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection. In conclusion, our study provides new clues to uncover the causative factors of AQP4-IgG+ NMOSD and provides a theoretical foundation for treating and monitoring the disease.


Assuntos
Infecções por Citomegalovirus , Neuromielite Óptica , Humanos , Neuromielite Óptica/complicações , Aquaporina 4 , Autoanticorpos , Imunoglobulina G
9.
J Transl Med ; 21(1): 151, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829176

RESUMO

BACKGROUND: Cancer-testis antigens (CTAs) are often expressed in tumor and testicular tissues but not in other normal tissues. To date, there has been no comprehensive study of the expression and clinical significance of CTA genes associated with endometrial cancer (EC) development. Additionally, the clinical relevance, biological role, and molecular mechanisms of the CTA gene TTK protein kinase (TTK) in EC are yet to be fully understood. METHODS: Using bioinformatics methods, we comprehensively investigated the genomic, transcriptomic, and epigenetic changes associated with aberrant TTK overexpression in EC samples from the TCGA database. We further investigated the mechanisms of the lower survival associated with TTK dysregulation using single-cell data of EC samples from the GEO database. Cell functional assays were used to confirm the biological roles of TTK in EC cells. RESULTS: We identified 80 CTA genes that were more abundant in EC than in normal tissues, and high expression of TTK was significantly linked with lower survival in EC patients. Furthermore, ROC analysis revealed that TTK could accurately distinguish stage I EC tissues from benign endometrial samples, suggesting that TTK has the potential to be a biomarker for early EC detection. We found TTK overexpression was more prevalent in EC patients with high-grade, advanced tumors, serous carcinoma, and TP53 alterations. Furthermore, in EC tissue, TTK expression showed a strong positive correlation with EMT-related genes. With single-cell transcriptome data, we identified a proliferative cell subpopulation with high expression of TTK and known epithelial-mesenchymal transition (EMT)-related genes and transcription factors. When proliferative cells were grouped according to TTK expression levels, the overexpressed genes in the TTKhigh group were shown to be functionally involved in the control of chemoresistance. Utilizing shRNA to repress TTK expression in EC cells resulted in substantial decreases in cell proliferation, invasion, EMT, and chemoresistance. Further research identified microRNA-21 (miR-21) as a key downstream regulator of TTK-induced EMT and chemoresistance. Finally, the TTK inhibitor AZ3146 was effective in reducing EC cell growth and invasion and enhancing the apoptosis of EC cells generated by paclitaxel. CONCLUSION: Our findings establish the clinical significance of TTK as a new biomarker for EC and an as-yet-unknown carcinogenic function. This present study proposes that the therapeutic targeting of TTK might provide a viable approach for the treatment of EC.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Multiômica , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
10.
Nucleic Acids Res ; 51(D1): D890-D895, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35871305

RESUMO

A high-quality genome variation database derived from a large-scale population is one of the most important infrastructures for genomics, clinical and translational medicine research. Here, we developed the Chinese Millionome Database (CMDB), a database that contains 9.04 million single nucleotide variants (SNV) with allele frequency information derived from low-coverage (0.06×-0.1×) whole-genome sequencing (WGS) data of 141 431 unrelated healthy Chinese individuals. These individuals were recruited from 31 out of the 34 administrative divisions in China, covering Han and 36 other ethnic minorities. CMDB, housing the WGS data of a multi-ethnic Chinese population featuring wide geographical distribution, has become the most representative and comprehensive Chinese population genome database to date. Researchers can quickly search for variant, gene or genomic regions to obtain the variant information, including mutation basic information, allele frequency, genic annotation and overview of frequencies in global populations. Furthermore, the CMDB also provides information on the association of the variants with a range of phenotypes, including height, BMI, maternal age and twin pregnancy. Based on these data, researchers can conduct meta-analysis of related phenotypes. CMDB is freely available at https://db.cngb.org/cmdb/.


Assuntos
Bases de Dados Genéticas , População do Leste Asiático , Humanos , Frequência do Gene , Mutação , China/etnologia , População do Leste Asiático/genética , Variação Genética , Genética Populacional
11.
Cell Rep Med ; 3(12): 100847, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36493776

RESUMO

Recent technological advances in multi-omics and bioinformatics provide an opportunity to develop precision health assessments, which require big data and relevant bioinformatic methods. Here we collect multi-omics data from 4,277 individuals. We calculate the correlations between pairwise features from cross-sectional data and then generate 11 biological functional modules (BFMs) in males and 12 BFMs in females using a community detection algorithm. Using the features in the BFM associated with cardiometabolic health, carotid plaques can be predicted accurately in an independent dataset. We developed a model by comparing individual data with the health baseline in BFMs to assess health status (BFM-ash). Then we apply the model to chronic patients and modify the BFM-ash model to assess the effects of consuming grape seed extract as a dietary supplement. Finally, anomalous BFMs are identified for each subject. Our BFMs and BFM-ash model have huge prospects for application in precision health assessment.


Assuntos
Multiômica , Medicina de Precisão , Feminino , Humanos , Medicina de Precisão/métodos , Estudos Transversais
14.
Front Cell Infect Microbiol ; 12: 888582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694544

RESUMO

Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.


Assuntos
COVID-19 , Alelos , Povo Asiático , COVID-19/genética , Predisposição Genética para Doença , Humanos , SARS-CoV-2/genética
15.
Front Pharmacol ; 13: 870660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677427

RESUMO

Cancer is one of the leading causes of death worldwide, bringing a significant burden to human health and society. Accurate cancer diagnosis and biomarkers that can be used as robust therapeutic targets are of great importance as they facilitate early and effective therapies. Shared etiology among cancers suggests the existence of pan-cancer biomarkers, performance of which could benefit from the large sample size and the heterogeneity of the studied patients. In this study, we conducted a systematic RNA-seq study of 9,213 tumors and 723 para-cancerous tissue samples of 28 solid tumors from the Cancer Genome Atlas (TCGA) database, and 7,008 normal tissue samples from the Genotype-Tissue Expression (GTEx) database. By differential gene expression analysis, we identified 214 up-regulated and 186 downregulated differentially expressed genes (DEGs) in more than 80% of the studied tumors, respectively, and obtained 20 highly linked up- and downregulated hub genes from them. These markers have rarely been reported in multiple tumors simultaneously. We further constructed pan-cancer diagnostic models to classify tumors and para-cancerous tissues using 10 up-regulated hub genes with an AUC of 0.894. Survival analysis revealed that these hub genes were significantly associated with the overall survival of cancer patients. In addition, drug sensitivity predictions for these hub genes in a variety of tumors obtained several broad-spectrum anti-cancer drugs targeting pan-cancer. Furthermore, we predicted immunotherapy sensitivity for cancers based on tumor mutational burden (TMB) and the expression of immune checkpoint genes (ICGs), providing a theoretical basis for the treatment of tumors. In summary, we identified a set of biomarkers that were differentially expressed in multiple types of cancers, and these biomarkers can be potentially used for diagnosis and used as therapeutic targets.

16.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35598327

RESUMO

Distinguishing pathogenic variants from non-pathogenic ones remains a major challenge in clinical genetic testing of primary immunodeficiency (PID) patients. Most of the existing mutation pathogenicity prediction tools treat all mutations as homogeneous entities, ignoring the differences in characteristics of different genes, and use the same model for genes in different diseases. In this study, we developed a single nucleotide variant (SNV) pathogenicity prediction tool, Variant Impact Predictor for PIDs (VIPPID; https://mylab.shinyapps.io/VIPPID/), which was tailored for PIDs genes and used a specific model for each of the most prevalent PID known genes. It employed a Conditional Inference Forest model and utilized information of 85 features of SNVs and scores from 20 existing prediction tools. Evaluation of VIPPID showed that it had superior performance (area under the curve = 0.91) over non-specific conventional tools. In addition, we also showed that the gene-specific model outperformed the non-gene-specific models. Our study demonstrated that disease-specific and gene-specific models can improve SNV pathogenicity prediction performance. This observation supports the notion that each feature of mutations in the model can be potentially used, in a new algorithm, to investigate the characteristics and function of the encoded proteins.


Assuntos
Polimorfismo de Nucleotídeo Único , Doenças da Imunodeficiência Primária , Algoritmos , Humanos , Nucleotídeos , Virulência
17.
PLoS One ; 17(3): e0265469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358230

RESUMO

We designed a novel strategy to define codon usage bias (CUB) in 6 specific small cohorts of human genes. We calculated codon usage (CU) values in 29 non-disease-causing (NDC) and 31 disease-causing (DC) human genes which are highly expressed in 3 distinct tissues, kidney, muscle, and skin. We applied our strategy to the same selected genes annotated in 15 mammalian species. We obtained CUB hierarchical clusters for each gene cohort which showed tissue-specific and disease-specific CUB fingerprints. We showed that DC genes (especially those expressed in muscle) display a low CUB, well recognizable in codon hierarchical clustering. We defined the extremely biased codons as "zero codons" and found that their number is significantly higher in all DC genes, all tissues, and that this trend is conserved across mammals. Based on this calculation in different gene cohorts, we identified 5 codons which are more differentially used across genes and mammals, underlining that some genes have favorite synonymous codons in use. Since of the muscle genes clear clusters, and, among these, dystrophin gene surprisingly does not show any "zero codon" we adopted a novel approach to study CUB, we called "mapping-on-codons". We positioned 2828 dystrophin missense and nonsense pathogenic variations on their respective codon, highlighting that its frequency and occurrence is not dependent on the CU values. We conclude our strategy consents to identify a hierarchical clustering of CU values in a gene cohort-specific fingerprints, with recognizable trend across mammals. In DC muscle genes also a disease-related fingerprint can be observed, allowing discrimination between DC and NDC genes. We propose that using our strategy which studies CU in specific gene cohorts, as rare disease genes, and tissue specific genes, may provide novel information about the CUB role in human and medical genetics, with implications on synonymous variations interpretation and codon optimization algorithms.


Assuntos
Uso do Códon , Magnoliopsida , Animais , Análise por Conglomerados , Códon/genética , Distrofina/genética , Humanos , Magnoliopsida/genética , Mamíferos/genética , Doenças Raras/genética , Seleção Genética
18.
HGG Adv ; 3(1): 100054, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047845

RESUMO

Urinary stem cells (USCs) are a non-invasive, simple, and affordable cell source to study human diseases. Here we show that USCs are a versatile tool for studying Duchenne muscular dystrophy (DMD), since they are able to address RNA signatures and atypical mutation identification. Gene expression profiling of DMD individuals' USCs revealed a profound deregulation of inflammation, muscle development, and metabolic pathways that mirrors the known transcriptional landscape of DMD muscle and worsens following USCs' myogenic transformation. This pathogenic transcription signature was reverted by an exon-skipping corrective approach, suggesting the utility of USCs in monitoring DMD antisense therapy. The full DMD transcript profile performed in USCs from three undiagnosed DMD individuals addressed three splicing abnormalities, which were decrypted and confirmed as pathogenic variations by whole-genome sequencing (WGS). This combined genomic approach allowed the identification of three atypical and complex DMD mutations due to a deep intronic variation and two large inversions, respectively. All three mutations affect DMD gene splicing and cause a lack of dystrophin protein production, and one of these also generates unique fusion genes and transcripts. Further characterization of USCs using a novel cell-sorting technology (Celector) highlighted cell-type variability and the representation of cell-specific DMD isoforms. Our comprehensive approach to USCs unraveled RNA, DNA, and cell-specific features and demonstrated that USCs are a robust tool for studying and diagnosing DMD.

19.
J Clin Immunol ; 42(2): 375-393, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825286

RESUMO

Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.


Assuntos
Síndromes de Imunodeficiência , Linfócitos T , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Reparo do DNA/genética , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Metilação , Proteínas Repressoras/genética
20.
Front Physiol ; 12: 716471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744760

RESUMO

Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually identify new potential drugs paving the way for personalized medicine, limitations regarding the availability of neuromuscular disease-related biological samples, rarely accessible from patients, are a major challenge. Aim: We characterized urinary stem cells (USCs) by in-depth transcriptome and protein profiling to evaluate whether this easily accessible source of patient-derived cells is suitable to study neuromuscular genetic diseases, focusing especially on those currently involved in clinical trials. Methods: The global transcriptomics of either native or MyoD transformed USCs obtained from control individuals was performed by RNA-seq. The expression of 610 genes belonging to 16 groups of disorders (http://www.musclegenetable.fr/) whose mutations cause neuromuscular diseases, was investigated on the RNA-seq output. In addition, protein expression of 11 genes related to NMDs including COL6A, EMD, LMNA, SMN, UBA1, DYNC1H1, SOD1, C9orf72, DYSF, DAG1, and HTT was analyzed in native USCs by immunofluorescence and/or Western blot (WB). Results: RNA-seq profile of control USCs shows that 571 out of 610 genes known to be involved in NMDs, are expressed in USCs. Interestingly, the expression levels of the majority of NMD genes remain unmodified following USCs MyoD transformation. Most genes involved in the pathogenesis of all 16 groups of NMDs are well represented except for channelopathies and malignant hyperthermia related genes. All tested proteins showed high expression values, suggesting consistency between transcription and protein representation in USCs. Conclusion: Our data suggest that USCs are human cells, obtainable by non-invasive means, which might be used as a patient-specific cell model to study neuromuscular disease-causing genes and that they can be likely adopted for a variety of in vitro functional studies such as mutation characterization, pathway identification, and drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA