RESUMO
Microplastics (MPs) and heavy metals often coexist in soil, however their interactions and effects on the soil-plant system remain largely unclear. In this study, ramie (Boehmeria nivea L.) was exposed to soil contaminated with lead (Pb) and polystyrene (PS) of different sizes, dosages, and surface-charged functional groups. This design aimed to simulate the effects of MPs on phytoremediation. The experimental results revealed that PS exacerbated the damaging effects of Pb on ramie. Compared to the effect of Pb alone, PS-COOH had a greater influence on root vigor, leading to a 15.6 % reduction in the active absorption ratio. Laser scanning confocal microscope showed PS entered the roots. Adsorption/desorption experiments demonstrated that PS had a weaker adsorption capacity for Pb than soil but a greater desorption rate than soil when simulating rhizosphere secretion. Moreover, PS reduced soil pH and increased the reducible state of Pb by 6-12 %. After 100 days of phytoremediation, Pb content in the soil with PS-5 µm was 150 µg g-1 less than that in the soil without PS. These results demonstrated that PS improved Pb bioavailability and enhanced the efficiency of Pb uptake by ramie. The redundancy analysis demonstrated that PS mitigated the toxicity of Pb to rhizosphere microorganisms, potentially via its effects on metal chemical fractions, dehydrogenase activity (S-DHA), cation exchange capacity (CEC), and soil organic matter (SOM). This study indicates that the presence of PS could potentially enhance the phytoremediation efficiency of ramie in Pb-contaminated land by influencing soil microenvironmental properties. This study provides insights into the complex interactions of MPs with soil-plant-microbial systems during metal remediation, thereby enhancing our understanding of their environmental impacts.
RESUMO
The MuralDH dataset is an invaluable digital resource developed for the conservation and restoration of Dunhuang murals, which are critical components of global cultural heritage facing threats from degradation. This dataset comprises over 5000 high-resolution images tailored to 512 × 512 pixels, emphasizing the preservation of mural integrity and detail. It includes 1000 images with pixel-level damage annotations for segmentation research and 500 images specially processed for super-resolution studies, catering to a wide range of digital restoration needs. While the primary focus of this work is the dataset itself, we also introduce a supportive digital restoration framework. This framework, which encompasses damage segmentation, inpainting, and super-resolution techniques, serves as a secondary validation of MuralDH's utility and versatility. Through MuralDH, technology revives ancient art, embodying the essence of interdisciplinary innovation. By facilitating advanced research in computer vision and artificial intelligence, MuralDH aims to revolutionize the digital preservation practices for murals and other cultural artifacts, demonstrating the critical role of interdisciplinary collaboration in safeguarding our cultural legacy.
RESUMO
Catalysts for peroxymonosulfate (PMS) activation are appealing in the purification of organic wastewater. Singlet oxygen (1O2) is widely recognized as a crucial reactive species for degrading organic contaminants in catalysts/PMS systems due to its adamant resistance to inorganic anions, high selectivity, and broad pH applicability. With the rapid growth of studies on 1O2 in catalysts/PMS systems, it becomes necessary to provide a comprehensive review of its current state. This review highlights recent advancements concerning 1O2 in catalysts/PMS systems, with a primary focus on generation pathways and identification methods. The generation pathways of 1O2 are summarized based on whether (distinguished by the geometric structures of metal species) or not (distinguished by the active sites) the metal element is included in the catalysts. Furthermore, this review thoroughly discusses the influence of metal valence states and metal species with different geometric structures on 1O2 generation. Various potential strategies are explored to regulate the generation of 1O2 from the perspective of catalyst design. Identification methods of 1O2 primarily include electron paramagnetic resonance (EPR), quenching experiments, reaction in D2O solution, and chemical probe tests in catalysts/PMS systems. The principles and applications of these methods are presented comprehensively along with their applicability, possible disagreements, and corresponding solutions. Besides, an identifying procedure on the combination of main identification methods is provided to evaluate the role of 1O2 in catalysts/PMS systems. Lastly, several perspectives for further studies are proposed to facilitate developments of 1O2 in catalysts/PMS systems.
RESUMO
In recent years, layered double hydroxide-biochar (LDH-BC) composites as adsorbents and catalysts for contaminants removal (inorganic anions, heavy metals, and organics) have received increasing attention and became a new research point. It is because of the good chemical stability, abundant surface functional groups, excellent anion exchange ability, and good electronic properties of LDH-BC composites. Hence, we offer an overall review on the developments and processes in the synthesis of LDH-BC composites as adsorbents and catalysts. Special attention is devoted to the strategies for enhancing the properties of LDH-BC composites, including (1) magnetic treatment, (2) acid treatment, (3) alkali treatment, (4) controlling metal ion ratios, (5) LDHs intercalation, and (6) calcination. In addition, further studies are called for LDH-BC composites and potential areas for future application of LDH-BC composites are also proposed.