Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Biol Macromol ; 280(Pt 4): 136230, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362435

RESUMO

Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number. Transcriptome analysis suggests that genes involved in nitrogen metabolism and plant hormone signaling pathways could be the main reasons for the differences in tillering among these varieties. The amino acid transporter OsAAP11 in the transcriptome was essential for bud outgrowth and rice tillering based on the phenotypic performance of its transgenic plants. Further results found that OsAAP11 was able to transport amino acids such as proline, glycine, and alanine in rice. Natural variations were found in the promoter region of this gene in different Kam sweet rice varieties, which may lead to differences in the transcription levels of OsAAP11. Overall, the results suggest that the natural variations of OsAAP11 in rice might lead to variations in its expression levels, further affecting bud outgrowth and tillering through regulating the transport and accumulation of amino acids.

2.
Plant Physiol ; 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39425973

RESUMO

Amino acid transporters play important roles in plant growth and stress tolerance; however, whether the abscisic acid signaling pathway regulates their transcription in rice (Oryza sativa) under salt stress remains unclear. In this study, we report that the transcription factor OsMYB2 (MYB transcription factor 2) of the abscisic acid signaling pathway mediates the expression of the gene encoding the amino acid transporter OsANT1 (aromatic and neutral amino acid transporter 1), which positively regulates growth and salt tolerance in rice. OsANT1 was mainly expressed in the leaf blade and panicle under normal conditions and transports leucine, phenylalanine, tyrosine and proline, positively regulating tillering and yield in rice. Nevertheless, salt stress induced the accumulation of abscisic acid and strongly increased the expression level of OsANT1 in the root, resulting in enhanced salt tolerance of rice seedlings, as evidenced by higher proline concentration and antioxidant-like enzyme activities and lower malondialdehyde and hydrogen peroxide concentrations. Moreover, we showed that OsMYB2 interacts with the promoter of OsANT1 and promotes its expression. Overexpression of OsMYB2 also improved tillering, yield, and salt tolerance in rice. In conclusion, our results suggest that the transcription factor OsMYB2 triggers OsANT1 expression and regulates growth and salt tolerance in rice, providing insights into the role of the abscisic acid signaling pathway in the regulatory mechanism of amino acid transporters in response to salt stress.

3.
Pestic Biochem Physiol ; 204: 106039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277366

RESUMO

Tartary buckwheat (Fagopyrum tataricum) field weeds are rich in species, with many weeds causing reduced quality, yield, and crop failure. The selection of herbicide-resistant Tartary buckwheat varieties, while applying low-toxicity and efficient herbicides as a complementary weed control system, is one way to improve Tartary buckwheat yield and quality. Therefore, the development of herbicide-resistant varieties is important for the breeding of Tartary buckwheat. In this experiment, 50 mM ethyl methyl sulfonate solution was used to treat Tartary buckwheat seeds (M1) and then planted in the field. Harvested seeds (M2) were planted in the experiment field of Guizhou University, and when seedlings had 5-7 leaves, the seedlings were sprayed with 166 mg/L tribenuron-methyl (TBM). A total of 15 resistant plants were obtained, of which three were highly resistant. Using the homologous cloning method, an acetolactate synthase (ALS) gene encoding 547 amino acids was identified in Tartary buckwheat. A GTG (valine) to GGA (glycine) mutation (V409G) occurred at position 409 of the ALS gene in the high tribenuron-methyl resistant mutant sm113. The dm36 mutant harbored a double mutation, a deletion mutation at position 405, and a GTG (valine) to GGA (glycine) mutation (V411G) at position 411. The dm110 mutant underwent a double mutation: an ATG (methionine) to AGG (arginine) mutation (M333R) at position 333 and an insertion mutation at position 372. The synthesis of Chl a, Chl b, total Chl, and Car was significantly inhibited by TBM treatment. TBM was more efficient at suppressing the growth of wild-type plants than that of mutant plants. Antioxidant enzyme activities such as ascorbate peroxidase, peroxidase, and superoxide dismutase were significantly higher in resistant plants than in wild-type after spraying with TBM; malondialdehyde content was significantly lower than in wild-type plants after spraying with TBM. Plants with a single-site mutation in the ALS gene could survive, but their growth was affected by herbicide application. In contrast, plants with dual-site mutations in the ALS gene were not affected, indicating that plants with dual-site mutations in the ALS gene showed higher levels of resistance than plants with a single-site mutation in the ALS gene.


Assuntos
Acetolactato Sintase , Sulfonatos de Arila , Fagopyrum , Resistência a Herbicidas , Herbicidas , Mutação , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Fagopyrum/genética , Fagopyrum/efeitos dos fármacos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Sulfonatos de Arila/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 903, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350005

RESUMO

BACKGROUND: During the cold season, low temperature (LT) and high relative humidity (HRH) are significant environmental factors in greenhouses and plastic tunnels, often hindering plant growth and development. The chlorophyll (Chl) biosynthesis inhibitory mechanisms under LT and HRH stress are still widely unclear. To understand how cucumbers seedlings respond to LT and HRH stress, we investigated the impact of these stressors on Chl biosynthesis. RESULTS: Our results revealed that individual LT, HRH and combined LT + HRH stress conditions affected chlorophyll a, b, total chlorophyll and carotenoid content, reducing the levels of these pigments. The levels of Chlorophyll precursors were also markedly reduced under LT and HRH stresses, with the greatest reduction observed in cucumber seedlings exposed to LT + HRH conditions (9/5℃, 95%HRH). The activities of glutamate-1-semialdehyde transaminase (GSA-AT), ALA dehydratase (ALAD), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were increased under individual LT, HRH, conditions but decreased by combination of LT + HRH stress condition. In addition, Chl biosynthesis related genes (except PBG) were upregulated by the HRH stress but were significantly downregulated under the LT + HRH stress condition in cucumber seedlings. Furthermore, the content of phenols, flavonoids and phenolic acids (cinnamic acid and caffeic acid) were significantly surged under LT + HRH treatment over the control. Histochemical observation showed higher O2- and H2O2 content in cucumber leaves during the LT and HRH stress. CONCLUSION: The results indicate that LT + HRH stress significantly impairs chlorophyll biosynthesis in cucumber seedlings by drastically reducing pigment accumulation, altering enzyme activity and gene expression. Additionally, LT + HRH stress induces oxidative damage, which further exacerbates the decline in chlorophyll content and affects overall cucumber metabolism.


Assuntos
Clorofila , Temperatura Baixa , Cucumis sativus , Umidade , Cucumis sativus/metabolismo , Cucumis sativus/genética , Clorofila/metabolismo , Plântula/metabolismo , Plântula/genética , Metabolismo Secundário , Regulação da Expressão Gênica de Plantas
5.
Rice (N Y) ; 17(1): 55, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212859

RESUMO

Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.

6.
Plant Sci ; 347: 112202, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069009

RESUMO

Amino acids are necessary nutrients for the growth of Oryza sativa (rice), which can be mediated by amino acid transporter; however, our understanding of these transporters is still limited. This study found that the expression levels of amino acid permease gene OsAAP12 differed between indica and japonica rice. Altered expression of OsAAP12 negatively regulated tillering and yield in transgenic rice lines. Subcellular localization revealed that OsAAP12 was primarily localized to the plasma membrane. Moreover, it was indicated that OsAAP12 transported polar neutral amino acids asparagine (Asn), threonine (Thr), and serine (Ser) through experiments involving yeast heterologous complementation, fluorescence amino acid uptake, and amino acid content determination. Additionally, exogenous application of amino acids Asn, Thr, and Ser suppressed axillary buds outgrowth in OsAAP12 overexpression lines compared with wild-type ZH11. Conversely, the opposite trend was observed in CRISPR mutant lines. RNA-seq analysis showed that the expression patterns of genes involved in the nitrogen and cytokinin pathways were generally altered in OsAAP12 modified lines. Hormone assays indicated that OsAAP12 mutant lines accumulated cytokinins in the basal part of rice, whereas overexpression lines had the opposite effect. In summary, CRISPR mutant of OsAAP12 boosted rice tillering and grain yield by coordinating the content of amino acids and cytokinins, which has potential application value in high-yield rice breeding.


Assuntos
Sistemas de Transporte de Aminoácidos , Aminoácidos , Citocininas , Nitrogênio , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/enzimologia , Citocininas/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
7.
BMC Plant Biol ; 24(1): 447, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783192

RESUMO

BACKGROUND: Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS: In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS: This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.


Assuntos
Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Plantas Geneticamente Modificadas , Aminoácidos Neutros/metabolismo , Regulação da Expressão Gênica de Plantas , Aminoácidos/metabolismo
8.
Physiol Plant ; 176(2): e14229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38413386

RESUMO

Kam Sweet Rice is a high-quality local variety of Guizhou province in China, but most varieties have awns on lemma. In this study, we aimed to obtain awnless varieties of Kam Sweet Rice by blocking the awn development-related gene OsGAD1 using CRISPR/Cas9 technology. We determined that natural variations of the OsGAD1 triggered different lengths of awns of Kam Sweet Rice. We found that the awning rate of the CRISPR lines of OsGAD1 in Guxiangnuo, Goujingao and Gouhuanggang decreased by over 65%, and the number of grains per panicle and yield per plant increased by more than 17% and 20% compared to the wild-types. Furthermore, we indicated that blocking OsGAD1 resulted in an increase of over 2% in the brown rice rate and milled rice rate in these varieties. In addition, the analysis of the transcriptome revealed that the regulation of awn development and yield formation in CRISPR lines of OsGAD1 may involve genes associated with phytohormone and nitrogen pathways. These results suggest that blocking OsGAD1 in Kam Sweet Rice using CRISPR/Cas9 technology can be used for breeding programs seeking high yield and grain quality of Kam Sweet Rice.


Assuntos
Oryza , Oryza/metabolismo , Grão Comestível/genética , Alelos , China
9.
Mol Plant ; 17(2): 240-257, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053337

RESUMO

Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.


Assuntos
Compostos de Amônio , Oryza , Oryza/genética , Melhoramento Vegetal , Agricultura/métodos , Nitrogênio/metabolismo , Água/metabolismo , Transdução de Sinais , Compostos de Amônio/metabolismo , Solo/química , Fertilizantes/análise
10.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570972

RESUMO

Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited resolution. In contrast, oligo-based FISH represents a more efficient method for chromosomal studies in plants. Oligo probes are computationally designed and synthesized for any plant species with a sequenced genome and are suitable for single and repetitive DNA sequences, entire chromosomes, or chromosomal segments. Furthermore, oligo probes used in the FISH experiment provide high specificity, resolution, and multiplexing. Moreover, oligo probes made from one species are applicable for studying other genetically and taxonomically related species whose genome has not been sequenced yet, facilitating molecular cytogenetic studies of non-model plants. However, there are some limitations of oligo probes that should be considered, such as requiring prior knowledge of the probe design process and FISH signal issues with shorter probes of background noises during oligo-FISH experiments. This review comprehensively discusses de novo oligo probe synthesis with more focus on single-copy DNA sequences, preparation, improvement, and factors that affect oligo-FISH efficiency. Furthermore, this review highlights recent applications of oligo-FISH in a wide range of plant chromosomal studies.

11.
Plant Sci ; 330: 111640, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804388

RESUMO

N is essential for plant architecture, particularly tillering. However, whether and how N mediates panicle branching and influences rice grain yield remains unclear. In order to identify genes and pathways associated with N-regulated panicle branching, we treated rice with different concentrations of N to determine the key genes by transcriptomic analysis and function verification. We measured panicle growth in response to N, and found that panicle branching benefits from 2 mM exogenous N, and 2-5 mM N is essential for vascular bundle, phloem, and xylem development in these branches. Interestingly, total N concentrations increased continuously with N 0-2 mM and decreased continuously with N 5-15 mM, whereas the concentrations of amino acids Tyr and Val increased continuously with N 0-15 mM in the panicle. Furthermore, N metabolism, phytohormone signal transduction, stress response, and photosynthesis pathways play important roles in response to nitrogen of regulating panicle branching. Altered expression of key N-response amino acid transporter gene OsAAP15 positively regulated panicle branching at low N concentrations, however, OsAAP15 negatively influenced it at high N concentrations. Overexpression of OsAAP15 in the field significantly increased primary and secondary branches, filled grain number, and grain yield by regulating the concentrations of amino acids Tyr and Val in the panicle. Taken together, OsAAP15, an amino acid transporter in response to nitrogen concentration, could mediate panicle branching and grain yield, and it may have applications in rice breeding to improve grain yield under extreme N concentrations.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Grão Comestível/genética , Grão Comestível/metabolismo , Nitrogênio/metabolismo
12.
Front Plant Sci ; 13: 900262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909754

RESUMO

Melatonin plays an important role in plant resistance to biotic and abiotic stresses. However, whether melatonin is involved in the regulation of plant architecture, such as the formation of axillary bud outgrowth or tillering, in rice remains unknown. Here, we found that different concentrations of melatonin influenced axillary bud outgrowth in rice, and moderate melatonin concentrations also alleviated the inhibition of axillary bud outgrowth in the presence of high concentrations of basic amino acids lysine and arginine. Furthermore, transcriptome analysis demonstrated that genes involved in nitrogen metabolism and phytohormone signal transduction pathways may affect axillary bud outgrowth, which is regulated by melatonin. We determined that the differentially expressed genes glutamine synthetase OsGS2 and amino acid transporter OsAAP14, which are involved in nitrogen metabolism and are regulated by melatonin and basic amino acids, were the key regulators of axillary bud outgrowth in rice. In addition, we validated the functions of OsGS2 and OsAAP14 using rice transgenic plants with altered axillary bud outgrowth and tillers. Taken together, these results suggest that melatonin mediates axillary bud outgrowth by improving nitrogen assimilation and transport in rice.

13.
Plant Sci ; 320: 111293, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643602

RESUMO

Anthocyanins are antioxidants with important benefits for human health. Therefore, they have caught the interest of plant breeding programs. In this study, GzMYB-7D1, the key gene responsible for anthocyanin synthesis regulation in the purple Guizimai No.1 wheat, was transferred into Zhonghua 11 (ZH11) rice. Compared to wild-type ZH11, anthocyanin accumulated in the seeds of GzMYB-7D1 overexpressing lines. Furthermore, anthocyanin content kept increasing in the growing panicle of GzMYB-7D1 overexpressing lines, accumulating mostly in the rice glumes and grains during maturation, along with a concomitant steady decrease in chlorophyll. Genes related to anthocyanin synthesis, including OsPAL4, Os4CL3, OsCHS, OsDFR, OsANS, and Os3GT, exhibited much higher expression in the panicles of GzMYB-7D1 overexpressing lines than in those of wild-type ZH11. Interestingly, the grain yield per plant was significantly improved in GzMYB-7D1 overexpressing lines, as indicated by a higher tiller number per plant and branching of the secondary panicle, together with a significantly higher content of total amino acids. In conclusion, the GzMYB-7D1 gene of Guizimai No.1 wheat is essential for regulating seed anthocyanin levels and grain yield in rice, and could be applied to attain rice varieties with better nutritional value and improved yields.


Assuntos
Oryza , Triticum , Antocianinas , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Sementes/química , Sementes/genética , Triticum/metabolismo
14.
Front Plant Sci ; 13: 830848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444677

RESUMO

Late embryogenesis-abundant (LEA) proteins are critical in helping plants cope with salt stress. "Y1805" is a salt-tolerant Tritipyrum. We identified a "Y1805"-specific LEA gene that was expressed highly and sensitively under salt stress using transcriptome analysis. The novel group 2 LEA gene (TtLEA2-1) was cloned from "Y1805." TtLEA2-1 contained a 453 bp open reading frame encoding an 151-amino-acid protein that showed maximum sequence identity (77.00%) with Thinopyrum elongatum by phylogenetic analysis. It was mainly found to be expressed highly in the roots by qRT-PCR analysis and was located in the whole cell. Forty-eight candidate proteins believed to interact with TtLEA2-1 were confirmed by yeast two-hybrid analysis. These interacting proteins were mainly enriched in "environmental information processing," "glycan biosynthesis and metabolism," and "carbohydrate metabolism." Protein-protein interaction analysis indicated that the translation-related 40S ribosomal protein SA was the central node. An efficient wheat transformation system has been established. A coleoptile length of 2 cm, an Agrobacteria cell density of 0.55-0.60 OD600, and 15 KPa vacuum pressure were ideal for common wheat transformation, with an efficiency of up to 43.15%. Overexpression of TaLEA2-1 in wheat "1718" led to greater height, stronger roots, and higher catalase activity than in wild type seedlings. TaLEA2-1 conferred enhanced salt tolerance in transgenic wheat and may be a valuable gene for genetic modification in crops.

15.
Front Med (Lausanne) ; 8: 761601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901076

RESUMO

Persons with mental disorders (PwMDs) are a priority group for COVID-19 vaccination, but empirical data on PwMDs' vaccine uptake and attitudes toward COVID-19 vaccines are lacking. This study examined the uptake, acceptance, and hesitancy associated with COVID-19 vaccines among Chinese PwMDs during China's nationwide vaccine rollout. In total, 906 adult PwMDs were consecutively recruited from a large psychiatric hospital in Wuhan, China, and administered a self-report questionnaire, which comprised standardized questions regarding sociodemographics, COVID-19 vaccination status, attitudes toward COVID-19 vaccines, and psychopathology. Vaccine-recipients were additionally asked to report adverse events that occurred following vaccination. PwMDs had a much lower rate of vaccination than Wuhan residents (10.8 vs. 40.0%). The rates of vaccine acceptance and hesitancy were 58.1 and 31.1%, respectively. Factors associated with vaccine uptake included having other mental disorders [odds ratio (OR) = 3.63], believing that ≥50% of vaccine-recipients would be immune to COVID-19 (OR = 3.27), being not worried about the side effects (OR = 2.59), and being an outpatient (OR = 2.24). Factors associated with vaccine acceptance included perceiving a good preventive effect of vaccines (OR = 12.92), believing that vaccines are safe (OR = 4.08), believing that ≥50% of vaccine-recipients would be immune to COVID-19 (OR = 2.20), and good insight into the mental illness (OR = 1.71). Adverse events occurred in 21.4% of vaccine-recipients and exacerbated pre-existing psychiatric symptoms in 2.0% of vaccine-recipients. Nevertheless, 95.2% of vaccine-recipients rated adverse events as acceptable. Compared to the 58.1% vaccine acceptance rate and the 40.0% vaccination rate in the general population, the 10.8% vaccine coverage rate suggested a large unmet need for COVID-19 vaccination in Chinese PwMDs. Strategies to increase vaccination coverage among PwMDs may include provision of reliable sources of information on vaccines, health education to foster positive attitudes toward vaccines, a practical guideline to facilitate clinical decision-making for vaccination, and the involvement of psychiatrists in vaccine consultation and post-vaccination follow-up services.

16.
J Integr Plant Biol ; 63(7): 1260-1272, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838011

RESUMO

Multiple genes and microRNAs (miRNAs) improve grain yield by promoting tillering. MiR319s are known to regulate several aspects of plant development; however, whether miR319s are essential for tillering regulation remains unclear. Here, we report that miR319 is highly expressed in the basal part of rice plant at different development stages. The miR319 knockdown line Short Tandem Target Mimic 319 (STTM319) showed higher tiller bud length in seedlings under low nitrogen (N) condition and higher tiller bud number under high N condition compared with the miR319a-overexpression line. Through targets prediction, we identified OsTCP21 and OsGAmyb as downstream targets of miR319. Moreover, OsTCP21 and OsGAmyb overexpression lines and STTM319 had increased tiller bud length and biomass, whereas both were decreased in OsTCP21 and OsGAmyb knockout lines and OE319a. These data suggest that miR319 regulates rice tiller bud development and tillering through targeting OsTCP21 and OsGAmyb. Notably, the tiller number and grain yield increased in STTM319 and overexpression lines of OsTCP21 and OsGAmyb but decreased in OE319a and knockout lines of OsTCP21 and OsGAmyb. Taken together, our findings indicate that miR319s negatively affect tiller number and grain yield by targeting OsTCP21 and OsGAmyb, revealing a novel function for miR319 in rice.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética
17.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671705

RESUMO

Persistent lesion mimic can cause leaf senescence, affecting grain yield in crops. However, knowledge about the regulation of lesion mimic and leaf senescence in crop plants is still limited. Here, we report that the amino acid transporter OsAAP3, a negative regulator of tiller bud elongation and rice grain yield, is involved in lesion mimic and leaf senescence. Altered expression of OsAAP3 can initiate the nitric oxide signaling pathway through excessive accumulation of arginine in rice leaves, influencing ROS accumulation, antioxidant enzymes activities, proline concentration, and malondialdehyde concentration. This finally triggers cell death which ultimately leads to lesion mimic and leaf senescence by regulating the degradation of chloroplast and the expression abundance of components in the photosynthetic pathway. Overall, the results not only provide initial insights into the regulatory role of amino acid transport genes in rice growth and development, but also help to understand the factors regulating the leaf senescence.


Assuntos
Arginina/metabolismo , Oryza/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico/genética , Morte Celular/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Óxido Nítrico/metabolismo , Oryza/genética , Fotossíntese/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário/genética
18.
Rice (N Y) ; 14(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409665

RESUMO

BACKGROUND: Amino acids, which are transported by amino acid transporters, are the major forms of organic nitrogen utilized by higher plants. Among the 19 Amino Acid Permease transporters (AAPs) in rice, only a small number of these genes have been reported to influence rice growth and development. However, whether other OsAAPs are responsible for rice growth and development is unclear. RESULTS: In this study, we demonstrate that OsAAP4 promoter sequences are divergent between Indica and Japonica, with higher expression in the former, which produces more tillers and higher grain yield than does Japonica. Overexpression of two different splicing variants of OsAAP4 in Japonica ZH11 significantly increased rice tillering and grain yield as result of enhancing the neutral amino acid concentrations of Val, Pro, Thr and Leu. OsAAP4 RNA interference (RNAi) and mutant lines displayed opposite trends compared with overexpresing (OE) lines. In addition, exogenous Val or Pro at 0.5 mM significantly promoted the bud outgrowth of lines overexpressing an OsAAP4a splicing variant compared with ZH11, and exogenous Val or Pro at 2.0 mM significantly enhanced the bud outgrowth of lines overexpressing splicing variant OsAAP4b compared with ZH11. Of note, the results of a protoplast amino acid-uptake assay showed that Val or Pro at different concentrations was specifically transported and accumulated in these overexpressing lines. Transcriptome analysis further demonstrated that OsAAP4 may affect nitrogen transport and metabolism, and auxin, cytokinin signaling in regulating rice tillering. CONCLUSION: Our results suggested that OsAAP4 contributes to rice tiller and grain yield by regulating neutral amino acid allocation through two different splicing variants and that OsAAP4 might have potential applications in rice breeding.

19.
J Exp Bot ; 71(16): 4763-4777, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32485736

RESUMO

Nitrogen (N) is a major element necessary for crop yield. In most plants, organic N is primarily transported in the form of amino acids. Here, we show that amino acid permease 1 (AAP1) functions as a positive regulator of growth and grain yield in rice. We found that the OsAAP1 gene is highly expressed in rice axillary buds, leaves, and young panicles, and that the OsAAP1 protein is localized to both the plasma membrane and the nuclear membrane. Compared with the wild-type ZH11, OsAAP1 overexpression (OE) lines exhibited increased filled grain numbers as a result of enhanced tillering, while RNAi and CRISPR (clustered regularly interspaced short palindromic repeat; Osaap1) knockout lines showed the opposite phenotype. In addition, OsAAP1-OE lines had higher concentrations of neutral and acidic amino acids, but lower concentrations of basic amino acids in the straw. An exogenous treatment with neutral amino acids promoted axillary bud outgrowth more strongly in the OE lines than in the WT, RNAi, or Osaap1 lines. Transcriptome analysis of Osaap1 further demonstrated that OsAAP1 may affect N transport and metabolism, and auxin, cytokinin, and strigolactone signaling in regulating rice tillering. Taken together, these results support that increasing neutral amino acid uptake and reallocation via OsAAP1 could improve growth and grain yield in rice.


Assuntos
Aminoácidos Neutros , Oryza , Sistemas de Transporte de Aminoácidos/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
BMC Plant Biol ; 20(1): 197, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380960

RESUMO

BACKGROUND: N is an important macronutrient required for plant development and significantly influences axillary bud outgrowth, which affects tillering and grain yield of rice. However, how different N concentrations affect axillary bud growth at the molecular and transcriptional levels remains unclear. RESULTS: In this study, morphological changes in the axillary bud growth of rice seedlings under different N concentrations ranging from low to high levels were systematically observed. To investigate the expression of N-induced genes involved in axillary bud growth, we used RNA-seq technology to generate mRNA transcriptomic data from two tissue types, basal parts and axillary buds, of plants grown under six different N concentrations. In total, 10,221 and 12,180 DEGs induced by LN or HN supplies were identified in the basal parts and axillary buds, respectively, via comparisons to expression levels under NN level. Analysis of the coexpression modules from the DEGs of the basal parts and axillary buds revealed an abundance of related biological processes underlying the axillary bud growth of plants under N treatments. Among these processes, the activity of cell division and expansion was positively correlated with the growth rate of axillary buds of plants grown under different N supplies. Additionally, TFs and phytohormones were shown to play roles in determining the axillary bud growth of plants grown under different N concentrations. We have validated the functions of OsGS1;2 and OsGS2 through the rice transgenic plants with altered tiller numbers, illustrating the important valve of our transcriptomic data. CONCLUSION: These results indicate that different N concentrations affect the axillary bud growth rate, and our study show comprehensive expression profiles of genes that respond to different N concentrations, providing an important resource for future studies attempting to determine how axillary bud growth is controlled by different N supplies.


Assuntos
Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Plântula/crescimento & desenvolvimento , Oryza/genética , Plântula/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA