Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 52(5): 2404-11, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23421448

RESUMO

Using drop calorimetry, we measured enthalpy increments of the LiF-KF, LiF-RbF, and LiF-CsF binary systems at temperatures above the melting point. Ten samples with different compositions (four compositions for LiF-KF, one composition for LiF-RbF, and five compositions for LiF-CsF) were prepared and measured between 884 K and 1382 K. To protect the calorimeter from corrosive fluoride vapor at high temperature, an encapsulating technique developed for this purpose was used. The samples were filled in nickel containers that were sealed by laser welding and afterward used for the measurements. From the obtained results, we derived the molar heat capacity functions of the respective samples. The heat capacities of the samples, having different compositions of the same binary system, were compared with the values for ideal behavior and the excess heat capacity function was determined for the entire composition range of the liquid solution. It was found that the excess heat capacities clearly depend on the cation radius and increase in the following order: LiF-NaF < LiF-KF < LiF-RbF < LiF-CsF.

2.
J Contam Hydrol ; 102(3-4): 273-84, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18986728

RESUMO

Bentonite clay is considered as possible backfill material for nuclear waste repositories in crystalline rock. The same material may also be a source of clay colloids, which may act as carriers for actinide ions possibly released from the repository. Depending on the geochemical parameters, these colloids may be retained by interaction with mineral surfaces of the host rock. In the present study interaction of carboxylated fluorescent latex colloids, used as a model for bentonite colloids, with natural Grimsel granodiorite and some of its component minerals is studied by fluorescence microscopy and SEM/EDX. The experiments are carried out by varying the pH from 2-10. Strong adsorption is observed at pH values close to or below the points of zero charge (pHpzc) of the mineral surfaces. The influence of Eu(III), used as a chemical homologue for trivalent actinide ions, on colloid adsorption is investigated. Depending on mineral phase and pH, a significant increase of colloid adsorption is observed in the presence of Eu(III).


Assuntos
Coloides/química , Látex/química , Dióxido de Silício/química , Bentonita/química , Microscopia de Fluorescência , Resíduos Radioativos/análise
3.
J Contam Hydrol ; 102(3-4): 263-72, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18992961

RESUMO

In the context of deep geological storage of high level nuclear waste the repository will be designed as multiple barrier system including bentonite as buffer/backfill material and the host rock formation as geological barrier. The engineered barrier (bentonite) will be in contact with the host rock formation and consequently it can be expected that bentonite porewater will mix with formation groundwater. We simulate in this study the mixing of Grimsel groundwater (glacial melt water) with synthetic Febex porewater (assuming already saturated state) in a batch-type study and investigate the formation of colloids by laser-induced breakdown detection (LIBD) and SEM-EDX as well as the changes in radionuclide (U, Th, Eu) speciation via ultrafiltration or via time-resolved laser fluorescence spectroscopy (TRLFS) analysis in the case of Cm(III). Based on PHREEQC saturation index (SI) calculations a precipitation of calcite might be expected at low Febex porewater (FPW) content (<20%), fluorite precipitation at FPW contents <60% and gibbsite precipitation at FPW contents above 10%. The colloids generated in the mixing zone aggregate when the synthetic FPW content exceeds 10%. LIBD analysis of the time-dependent colloid generation/aggregation revealed a low concentration of colloids to be stable with an estimated plateau value around 100-200 ppt and an average colloid diameter around 30 nm after 140 days reaction time at FPW admixture >10%. SEM/EDX mostly identifies Al/Si containing colloidal phases and some sulfates could be found under certain admixture ratios. TRLFS studies show that the Cm speciation is strongly influenced by colloid formation in all solutions. In the Febex pore water/GGW mixing zone with high groundwater contents (>80%) colloids are newly formed and Cm is almost quantitatively associated with most likely polysilicilic acid colloids.


Assuntos
Bentonita/química , Coloides/química , Dióxido de Silício/química , Poluentes Radioativos da Água/química , Monitoramento de Radiação , Resíduos Radioativos/análise
4.
J Colloid Interface Sci ; 321(2): 323-31, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18342874

RESUMO

Three samples of calcite homogeneously doped with Eu(3+) were synthesized in a mixed-flow reactor. By means of selective excitation of the 5D0-->7F0 transition at low temperatures (T<20 K), three different Eu(3+) species (species A, B, and C, respectively) could be discriminated. For each one, the emission spectrum and lifetime were obtained after selective excitation of the single species. On the basis of these data, species C could be identified as Eu(3+) incorporated into the calcite lattice on the (nearly) octahedral Ca(2+) site. Species B was also identified as Eu(3+) incorporated into the calcite lattice, but the ligand field shows a much weaker symmetry. Species A, however, is not incorporated into the crystal's bulk, having 1-2 H(2)O ligands left in its first coordination sphere and showing very little symmetry, and is considered as Eu(3+) adsorbed onto the calcite surface. The emission spectra of species C for Eu:calcite grown in the presence of Na(+) were found to differ from those of Eu:calcite synthesized in the presence of K(+). The latter revealed a strong distortion in site symmetry, which was not observed in the samples grown in Na(+) solutions. This finding provides spectroscopic evidence in favor of an incorporation mechanism based on the charge-balanced coupled substitution of Na(+)+Eu(3+)<-->2Ca(2+).

5.
J Colloid Interface Sci ; 318(1): 5-14, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17964592

RESUMO

The adsorption of Cm(III) on quartz is studied by time resolved laser fluorescence spectroscopy (TRLFS) in the pH range from 3.75 to 9.45. The raw spectra are deconvoluted into three single components. The first one has a peak maximum at 593.8 nm and can be attributed to the Cm(III) aquo ion with an emission lifetime of 68+/-3 micros. The second one corresponds to an adsorbed species and has a peak maximum at 601.4 nm and an emission lifetime of 123+/-10 micros. The peak maximum of the third component is shifted to higher wavelength (603.6 nm) while the lifetime remains constant. Additionally, the adsorption of Am(III) on quartz is investigated in batch experiments. Based on the spectroscopic data a sorption mechanism is suggested. In addition, the obtained Am uptake data and the Cm-TRLFS data are modeled simultaneously using a single site Basic Stern model in combination with the charge distribution concept of Pauling. The finally suggested model consists of two bidentate surface complexes where the second one is the product of hydrolysis of the first sorption species. In a separate set of experiments the influence of silicic acid at different concentrations on the Cm(III) speciation in a quartz system is investigated by TRLFS. In suspension silicic acid at low concentration (3.5x10(-4) mol/L) has no influence on the Cm(III) speciation. At high concentration (3.5x10(-2) mol/L) the Cm(III) speciation is definitely influenced. The results at higher concentration indicate the formation of Cm(III)/silicic acid complexes and the incorporation of Cm(III) into siliceous bulk. This is confirmed by measurements at a quartz single crystal surface. Moreover, these measurements indicate the formation of quartz/Cm(III)/silicic acid ternary complexes at the mineral surface.

6.
J Colloid Interface Sci ; 302(1): 240-5, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16844133

RESUMO

Calcite homogeneously doped with Am(III) and Cm(III) was synthesized in a mixed-flow reactor. The mechanism of incorporation of these actinides (An) into calcite was investigated by time-resolved laser fluorescence spectroscopy. Two different An(III)/calcite species were found. One has been identified as ions bonded onto the calcite surface. The second An(III) species has lost its complete hydration sphere and is incorporated into the calcite bulk structure. Both Cm(III)/calcite and Am(III)/calcite complexes have been characterized by their fluorescence emission spectra and lifetimes. Structural parameters of the incorporated Am(III) species determined by EXAFS indicate a coordination number of 6.3+/-0.6 and distances of 2.40+/-0.01 A for the first AmO shell.

7.
Inorg Chem ; 43(15): 4708-18, 2004 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-15257600

RESUMO

Pu(IV) oxyhydroxide colloid growth is investigated with XAFS and LIBD. From combined results a model of colloid formation is proposed, which leads to a face-centered cubic Pu sublattice having cation defects, as observed with EXAFS, and a linear dependency of log [Pu(IV)] on -log [H+] with slope -2, in accord with LIBD. The solubility for Pu(IV) measured with LIBD is close to the lower limit of the solubility curve from previously reported data.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(1-2): 417-24, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14670508

RESUMO

A dedicated spectrofluorimeter using ultrashort laser pulses as an excitation source was developed to measure the fluorescence properties of organic ligands for metal ion complexation with organic ligands. The laser system consists of an oscillator system for generation of femtosecond laser pulses, an amplifier system to increase the pulse energy of the generated pulses to about 2 mJ and an optical parametrical amplifier system to provide tunable laser pulses over a wide wavelength range (280 nm-10 microm). The laser pulses were applied to the sample and the emitted fluorescence was detected using a fast-gating intensified CCD camera-based spectrometer. To verify the performance of the laser, the well-known protonation constant [Pure Appl. Chem. 69 (1997) 329] of 2,3-dihydroxybenzoic acid was determined. The fluorescence lifetime of the excited species was determined as 375+/-32 ps in the pH range from 1.0 to 6.0, having a fluorescence emission maximum at 438 nm. The first protonation constant was determined from fluorescence data as log K(3)=3.17+/-0.05 at an ionic strength of 0.1 M and at 294 K exploiting the Stern-Volmer mechanism. The agreement of the protonation constant with literature data (log K(3)=3.10+/-0.20, I=0.1 M, T=298 K [Bull. Soc. Jpn. 44 (1971) 3459]) demonstrates the excellent performance of our system. Furthermore, we determined the complex formation constant log K(1)=-3.11+/-0.16 by measuring the fluorescence properties of the ligand for the 1:1 uranyldihydroxobenzoate complex in the pH range from 3.0 to 4.5 at ionic strength of 0.1 M and at 294 K. We also determined the complex formation constant via the fluorescence emission of the metal ion uranium(VI). The fluorescence of the uranyl ion is influenced by dynamic quenching of the non-dissociated ligand and by static quenching due to the complex formation. After correction of these effects using the determined fluorescence lifetime, the complex formation constant was calculated to be log K(1)=-3.99+/-0.44. A 1:1 metal:ligand stoichiometry was determined with both measurement methods. However, the difference of the obtained formation constants and the derived standard deviations indicate a superimposition of effects with the excited-state reactions of the ligand.


Assuntos
Espectrometria de Fluorescência/métodos , Ácidos Carboxílicos/metabolismo , Concentração de Íons de Hidrogênio , Hidroxibenzoatos/química , Íons , Cinética , Lasers , Ligantes , Espectrofotometria , Fatores de Tempo , Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA