Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Biomater Adv ; 166: 214029, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276659

RESUMO

The gold standard treatment in anterior cruciate ligament (ACL) reconstruction involves autologous tissue transplantation, but this can have complications. Artificial grafts are an alternative, but the best option is debated. This study aimed to assess the biocompatibility and integration of a silk fibroin textile prosthesis (SF-TP) with peri-implant bone tissue and the native ACL. Twenty-six sheep underwent ACL reconstruction with SF-TP or autologous femoral fascia lata (FFL). Sheep were divided into two groups (3 and 6 months) and retrieved joints processed for histological, morphometrical and mechanical analysis. In vitro, SF-TP showed no cytotoxicity and good cell interaction up to 14 days. Histology revealed fibro-vascular tissue around SF-TP, with a progressive attempt of ligamentous-like tissue formation at 6 months. However, SF-TP group had higher joint damage scores. Micro-CT showed tunnel enlargement in SF-TP group, while FFL group had a decrease. SF-TP reconstructions had lower stiffness and strength (44 % and 64 % decrease) than those of autologous FFL reconstruction and often failed by pull-out from the bone tunnel due to tunnel enlargement. These results indicate poor osteointegration and graft motion with SF-TP, leading to joint damage/bone resorption and reduced mechanical competence. These results do not support the use of SF-TP for ACL reconstruction.

2.
J Mech Behav Biomed Mater ; 158: 106675, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068848

RESUMO

Tissue engineering (TE) of adipose tissue (AT) is a promising strategy that can provide 3D constructs to be used for in vitro modelling, overcoming the limitations of 2D cell cultures by closely replicating the complex breast tissue extracellular matrix (ECM), cell-cell, and cell-ECM interactions. However, the challenge in developing 3D constructs of AT resides in designing artificial matrices that can mimic the structural properties of native AT and support adipocytes biological functions. Herein, we developed photocrosslinkable hydrogels by employing gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) to mimic the collagenous and glycosaminoglycan components of AT microenvironment, respectively. The physico-mechanical properties of the hydrogels were tuned to target AT biomimetic properties by varying the hydrogel formulation (with or without hyaluronic acid), and the amount of photoinitiator (ruthenium/sodium persulfate) used to crosslink the hydrogels via visible light. The physical and mechanical properties of the developed hydrogels were tuned by varying the material formulation and the photoinitiator concentration. Preadipocytes were encapsulated inside the hydrogels and differentiated into mature adipocytes. Findings enlightened that HAMA addition in hybrid hydrogels boosted an increased lipid accumulation. The engineered biomimetic adipocyte-based constructs resulted promising as scaffolds or 3D in vitro models of AT.


Assuntos
Tecido Adiposo , Materiais Biomiméticos , Gelatina , Ácido Hialurônico , Hidrogéis , Luz , Engenharia Tecidual , Ácido Hialurônico/química , Gelatina/química , Hidrogéis/química , Tecido Adiposo/citologia , Materiais Biomiméticos/química , Reagentes de Ligações Cruzadas/química , Animais , Processos Fotoquímicos , Camundongos , Alicerces Teciduais/química , Fenômenos Mecânicos , Adipócitos/citologia
3.
Biomed Phys Eng Express ; 10(2)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38227959

RESUMO

Recently, direct-writing electrospinning has been pursued to reach a higher accuracy and complexity in fiber scaffold fabrication compared to other extrusion techniques more frequently encountered in tissue engineering. However, to date, direct-writing electrospinning lacks a wide application to process materials such as nature-derived polymers, of huge importance in tissue engineering given their chemical properties similar to that of native tissues. In this work, a setup to perform direct-writing electrospinning was developed and demonstrated versatility and efficiency in obtaining submicrometric fibers and guiding their deposition along various types of paths and patterns, resulting in a user-friendly method to create structures closely resembling tissue architecture.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Polímeros/química , Redação
4.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077087

RESUMO

Although lung disease is a major cause of mortality, the mechanisms involved in human lung regeneration are unclear because of the lack of experimental models. Here we report a novel model where human pluripotent stem cell-derived expandable cell lines sharing features of airway secretory and basal cells engraft in the distal rat lung after conditioning by locoregional de-epithelialization followed by irradiation and immunosuppression. The engrafting cells, which we named distal lung epithelial progenitors (DLEPs), contributed to alveolar epithelial cells and generated 'KRT5-pods', structures involved in distal lung repair after severe injury, but only rarely to distal airways. Most strikingly, however, injury induced by the conditioning regimen was largely prevented by the engrafting DLEPs. The approach described here provides a model to study mechanisms involved in human lung regeneration, and potentially lays the foundation for the preclinical development of cell therapy to treat lung injury and disease.

5.
ACS Mater Au ; 3(6): 711-726, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089660

RESUMO

Aiming to address the bone regeneration and cancer therapy functionalities in one single material, in this study, we developed a dual-functional theragenerative three-dimensional (3D) aerogel-based composite scaffold from hybridization of photo-cross-linked silk fibroin (SF) biopolymer with MXene (Ti3C2) two-dimensional (2D) nanosheets. To fabricate the scaffold, we first develop a dual-cross-linked SF-based aerogel scaffold through 3D printing and photo-cross-linking of the self-assembly-driven methacrylate-modified SF (SF-MA) gel with controlled pore size, macroscopic geometry, and mechanical stability. In the next step, to endow a remotely controlled photothermal antiosteosarcoma ablation function to fabricated aerogel scaffold, MXene 2D nanosheets with strong near-infrared (NIR) photon absorption properties were integrated into the 3D-printed scaffolds. While 3D-printed MXene-modified dual-cross-linked SF composite scaffolds can mediate the in vitro growth and proliferation of preosteoblastic cell lines, they also endow a strong photothermal effect upon remote irradiation with NIR laser but also significantly stimulate bone mineral deposition on the scaffold surface. Additionally, besides the local release of the anticancer model drug, the generated heat (45-53 °C) mediated the photothermal ablation of cancer cells. The developed aerogel-based composites and chosen therapeutic techniques are thought to render a significant breakthrough in biomaterials' future clinical applications.

6.
Soft Matter ; 19(41): 7869-7884, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37817578

RESUMO

Methylcellulose (MC) hydrogels are ideal materials for the design of thermo-responsive platforms capable of exploiting the environment temperature as a driving force to activate their smart transition. However, MC hydrogels usually show reduced stability in an aqueous environment and low mechanical properties, limiting their applications' breadth. A possible approach intended to overcome these limitations is chemical crosslinking, which represents a simple yet effective strategy to modify the MC hydrogels' properties (e.g., physicochemical, mechanical, and biological). In this regard, understanding the selected crosslinking method's role in modulating the MC hydrogels' properties is a key factor in their design. This review offers a perspective on the main MC chemical crosslinking approaches reported in the literature. Three main categories can be distinguished: (i) small molecule crosslinkers, (ii) crosslinking by high-energy radiation, and (iii) crosslinking via MC chemical modification. The advantages and limitations of each approach are elucidated, and special consideration is paid to the thermo-responsive properties after crosslinking towards the development of MC hydrogels with enhanced physical stability and mechanical performance, preserving the thermo-responsive behavior.

7.
Langmuir ; 39(12): 4326-4337, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930783

RESUMO

Multifunctional all-in-one biomaterial combining the therapeutic and regeneration functionalities for successive tumor therapy and tissue regeneration is in high demand in interdisciplinary research. In this study, a three-dimensional (3D) aerogel-based composite scaffold with a dual-network structure generated through self-assembly and photo-cross-linking with combined properties of photothermally triggered controlled anticancer drug release and photothermal cancer cell ablation was successfully fabricated. The fabrication of composites consists of self-assembly of a silk fibroin methacrylate (SF-MA) biopolymer incorporated with hydrothermally driven bismuth sulfide (Bi2S3) methacrylate nanobelts, followed by a photo-cross-linking-assisted 3D-printing process. The developed scaffolds presented hierarchically organized porosity and excellent photothermal conversion thanks to the strong near-infrared (NIR) photon absorption of incorporated Bi2S3 nanobelts inside the scaffold matrix. The heat generated in the scaffold mediated by laser irradiation has not only triggered controlled and prolonged release of the anticancer drug but also significantly ablated the bone cancer cells adhered on the scaffold. In addition, the developed 3D composite scaffolds have demonstrated excellent biodegradability for organic and inorganic network constituents at different media, enabling them as potential implants to be replaced by de novo tissue. In combination of chemotherapy and photothermal therapy, the multifunctional 3D-printed composite aerogel scaffold is expected to be an excellent implantable material in bone tissue engineering (BTE) for successive cancer therapy and tissue regeneration.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Fibroínas , Humanos , Alicerces Teciduais/química , Fibroínas/química , Terapia Fototérmica , Engenharia Tecidual/métodos , Antineoplásicos/farmacologia , Impressão Tridimensional
8.
Biomater Sci ; 11(9): 2988-3015, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36468579

RESUMO

Liver is one of the most important and complex organs in the human body, being characterized by a sophisticated microarchitecture and responsible for key physiological functions. Despite its remarkable ability to regenerate, acute liver failure and chronic liver diseases are major causes of morbidity and mortality worldwide. Therefore, understanding the molecular mechanisms underlying such liver disorders is critical for the successful development of novel therapeutics. In this frame, preclinical animal models have been portrayed as the most commonly used tool to address such issues. However, due to significant species differences in liver architecture, regenerative capacity, disease progression, inflammatory markers, metabolism rates, and drug response, animal models cannot fully recapitulate the complexity of human liver metabolism. As a result, translational research to model human liver diseases and drug screening platforms may yield limited results, leading to failure scenarios. To overcome this impasse, over the last decade, 3D human liver in vitro models have been proposed as an alternative to pre-clinical animal models. These systems have been successfully employed for the investigation of the etiology and dynamics of liver diseases, for drug screening, and - more recently - to design patient-tailored therapies, resulting in potentially higher efficacy and reduced costs compared to other methods. Here, we review the most recent advances in this rapidly evolving field with particular attention to organoid cultures, liver-on-a-chip platforms, and engineered scaffold-based approaches.


Assuntos
Falência Hepática Aguda , Organoides , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Animais
9.
Biomaterials ; 291: 121910, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403325

RESUMO

Renal tubular cells frequently lose differentiation markers and physiological properties when propagated in conventional cell culture conditions. Embedding cells in 3D microenvironments or controlling their 3D assembly by bioprinting can enhance their physiological properties, which is beneficial for modeling diseases in vitro. A potential cellular source for modeling renal tubular physiology and kidney diseases in vitro are directly reprogrammed induced renal tubular epithelial cells (iRECs). iRECs were cultured in various biomaterials and as bioprinted tubular structures. They showed high compatibility with the embedding substrates and dispensing methods. The morphology of multicellular aggregates was substantially influenced by the 3D microenvironment. Transcriptomic analyses revealed signatures of differentially expressed genes specific to each of the selected biomaterials. Using a new cellular model for autosomal-dominant polycystic kidney disease, Pkd1-/- iRECs showed disrupted morphology in bioprinted tubules and a marked upregulation of the Aldehyde dehydrogenase 1a1 (Aldh1a1). In conclusion, 3D microenvironments strongly influence the morphology and expression profiles of iRECs, help to unmask disease phenotypes, and can be adapted to experimental demands. Combining a direct reprogramming approach with appropriate biomaterials will facilitate construction of biomimetic kidney tubules and disease models at the microscale.


Assuntos
Biomimética , Doenças Renais Policísticas , Humanos , Rim , Células Epiteliais , Materiais Biocompatíveis
10.
Front Bioeng Biotechnol ; 10: 984805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394006

RESUMO

The development of 3D scaffold-based models would represent a great step forward in cancer research, offering the possibility of predicting the potential in vivo response to targeted anticancer or anti-angiogenic therapies. As regards, 3D in vitro models require proper materials, which faithfully recapitulated extracellular matrix (ECM) properties, adequate cell lines, and an efficient vascular network. The aim of this work is to investigate the possible realization of an in vitro 3D scaffold-based model of adipose tissue, by incorporating decellularized 3D plant structures within the scaffold. In particular, in order to obtain an adipose matrix capable of mimicking the composition of the adipose tissue, methacrylated gelatin (GelMA), UV photo-crosslinkable, was selected. Decellularized fennel, wild fennel and, dill leaves have been incorporated into the GelMA hydrogel before crosslinking, to mimic a 3D channel network. All leaves showed a loss of pigmentation after the decellularization with channel dimensions ranging from 100 to 500 µm up to 3 µm, comparable with those of human microcirculation (5-10 µm). The photo-crosslinking process was not affected by the embedded plant structures in GelMA hydrogels. In fact, the weight variation test, performed on hydrogels with or without decellularized leaves showed a weight loss in the first 96 h, followed by a stability plateau up to 5 weeks. No cytotoxic effects were detected comparing the three prepared GelMA/D-leaf structures; moreover, the ability of the samples to stimulate differentiation of 3T3-L1 preadipocytes in mature adipocytes was investigated, and cells were able to grow and proliferate in the structure, colonizing the entire microenvironment and starting to differentiate. The developed GelMA hydrogels mimicked adipose tissue together with the incorporated plant structures seem to be an adequate solution to ensure an efficient vascular system for a 3D in vitro model. The obtained results showed the potentiality of the innovative proposed approach to mimic the tumoral microenvironment in 3D scaffold-based models.

11.
Gels ; 8(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35621596

RESUMO

Infection is a severe complication in chronic wounds, often leading to morbidity or mortality. Current treatments rely on dressings, which frequently contain silver as a broad-spectrum antibacterial agent, although improper dosing can result in severe side effects. This work proposes a novel methylcellulose (MC)-based hydrogel designed for the topical release of silver nanoparticles (AgNPs) via an intelligent mechanism activated by the pH variations in infected wounds. A preliminary optimization of the physicochemical and rheological properties of MC hydrogels allowed defining the optimal processing conditions in terms of crosslinker (citric acid) concentration, crosslinking time, and temperature. MC/AgNPs nanocomposite hydrogels were obtained via an in situ synthesis process, exploiting MC both as a capping and reducing agent. AgNPs with a 12.2 ± 2.8 nm diameter were obtained. MC hydrogels showed a dependence of the swelling and degradation behavior on both pH and temperature and a noteworthy pH-triggered release of AgNPs (release ~10 times higher at pH 12 than pH 4). 1H-NMR analysis revealed the role of alkaline hydrolysis of the ester bonds (i.e., crosslinks) in governing the pH-responsive behavior. Overall, MC/AgNPs hydrogels represent an innovative platform for the pH-triggered release of AgNPs in an alkaline milieu.

12.
Cancers (Basel) ; 14(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454909

RESUMO

Osteosarcoma is a primary bone tumor characterized by a dismal prognosis, especially in the case of recurrent disease or metastases. Therefore, tools to understand in-depth osteosarcoma progression and ultimately develop new therapeutics are urgently required. 3D in vitro models can provide an optimal option, as they are highly reproducible, yet sufficiently complex, thus reliable alternatives to 2D in vitro and in vivo models. Here, we describe 3D in vitro osteosarcoma models prepared by printing polyurethane (PU) by fused deposition modeling, further enriched with human mesenchymal stromal cell (hMSC)-secreted biomolecules. We printed scaffolds with different morphologies by changing their design (i.e., the distance between printed filaments and printed patterns) to obtain different pore geometry, size, and distribution. The printed PU scaffolds were stable during in vitro cultures, showed adequate porosity (55-67%) and tunable mechanical properties (Young's modulus ranging in 0.5-4.0 MPa), and resulted in cytocompatible. We developed the in vitro model by seeding SAOS-2 cells on the optimal PU scaffold (i.e., 0.7 mm inter-filament distance, 60° pattern), by testing different pre-conditioning factors: none, undifferentiated hMSC-secreted, and osteo-differentiated hMSC-secreted extracellular matrix (ECM), which were obtained by cell lysis before SAOS-2 seeding. Scaffolds pre-cultured with osteo-differentiated hMSCs, subsequently lysed, and seeded with SAOS-2 cells showed optimal colonization, thus disclosing a suitable biomimetic microenvironment for osteosarcoma cells, which can be useful both in tumor biology study and, possibly, treatment.

13.
Front Bioeng Biotechnol ; 9: 732689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926414

RESUMO

Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks' printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks' viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.

14.
Gels ; 7(3)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34563027

RESUMO

Methylcellulose (MC) hydrogels have been successfully proposed in the field of cell sheet engineering (CSE), allowing cell detachment from their surface by lowering the temperature below their transition temperature (Tt). Among the main limitations of pristine MC hydrogels, low physical stability and mechanical performances limit the breadth of their potential applications. In this study, a crosslinking strategy based on citric acid (CA) was used to prepare thermoresponsive MC hydrogels, with different degrees of crosslinking, to exploit their possible use as substrates in CSE. The investigated amounts of CA did not cause any cytotoxic effect while improving the mechanical performance of the hydrogels (+11-fold increase in E, compared to control MC). The possibility to obtain cell sheets (CSs) was then demonstrated using murine fibroblast cell line (L929 cells). Cells adhered on crosslinked MC hydrogels' surface in standard culture conditions and then were harvested at selected time points as single CSs. CS detachment was achieved simply by lowering the external temperature below the Tt of MC. The detached CSs displayed adhesive and proliferative activity when transferred to new plastic culture surfaces, indicating a high potential for regenerative purposes.

15.
Front Immunol ; 12: 639572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012434

RESUMO

Chronic Lymphocytic Leukemia (CLL) represents the most common leukemia in the western world and remains incurable. Leukemic cells organize and interact in the lymphoid tissues, however what actually occurs in these sites has not been fully elucidated yet. Studying primary CLL cells in vitro is very challenging due to their short survival in culture and also to the fact that traditional two-dimensional in vitro models lack cellular and spatial complexity present in vivo. Based on these considerations, we exploited for the first time three-dimensional (3D) bioprinting to advance in vitro models for CLL. This technology allowed us to print CLL cells (both primary cells and cell lines) mixed with the appropriate, deeply characterized, hydrogel to generate a scaffold containing the cells, thus avoiding the direct cell seeding onto a precast 3D scaffold and paving the way to more complex models. Using this system, we were able to efficiently 3D bioprint leukemic cells and improve their viability in vitro that could be maintained up to 28 days. We monitored over time CLL cells viability, phenotype and gene expression, thus establishing a reproducible long-term 3D culture model for leukemia. Through RNA sequencing (RNAseq) analysis, we observed a consistent difference in gene expression profile between 2D and 3D samples, indicating a different behavior of the cells in the two different culture settings. In particular, we identified pathways upregulated in 3D, at both day 7 and 14, associated with immunoglobulins production, pro-inflammatory molecules expression, activation of cytokines/chemokines and cell-cell adhesion pathways, paralleled by a decreased production of proteins involved in DNA replication and cell division, suggesting a strong adaptation of the cells in the 3D culture. Thanks to this innovative approach, we developed a new tool that may help to better mimic the physiological 3D in vivo settings of leukemic cells as well as of immune cells in broader terms. This will allow for a more reliable study of the molecular and cellular interactions occurring in normal and neoplastic conditions in vivo, and could also be exploited for clinical purposes to test individual responses to different drugs.


Assuntos
Bioimpressão/métodos , Técnicas de Cultura de Células/métodos , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Quimiocinas/genética , Replicação do DNA/genética , Expressão Gênica/genética , Humanos , Hidrogéis/química , Leucemia Linfocítica Crônica de Células B/genética , Impressão Tridimensional , Alicerces Teciduais/química
16.
Biotechnol Bioeng ; 118(1): 465-480, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997340

RESUMO

Chondral and osteochondral lesions represent one of the most challenging problems in the orthopedic field, as these types of injuries lead to disability and worsened quality of life for patients and have an economic impact on the healthcare system. The aim of this in vivo study was to develop a new tissue engineering approach through a hybrid scaffold for osteochondral tissue regeneration made of porous polyurethane foam (PU) coated under vacuum with calcium phosphates (PU/VAC). Scaffold characterization showed a highly porous and interconnected structure. Human amniotic mesenchymal stromal cells (hAMSCs) were loaded into scaffolds using pectin (PECT) as a carrier. Osteochondral defects in medial femoral condyles of rabbits were created and randomly allocated in one of the following groups: plain scaffold (PU/VAC), scaffold with hAMSCs injected in the implant site (PU/VAC/hAMSC), scaffold with hAMSCs loaded in pectin (PU/VAC/PECT/hAMSC), and no treated defects (untreated). The therapeutic efficacy was assessed by macroscopic, histological, histomorphometric, microtomographic, and ultrastructural analyses at 3, 6, 12, and 24 weeks. Histological results showed that the scaffold was permissive to tissue growth and penetration, an immature osteocartilaginous tissue was observed at early experimental times, with a more accentuated bone regeneration in comparison with the cartilage layer in the absence of any inflammatory reaction.


Assuntos
Materiais Biomiméticos , Regeneração Óssea , Cartilagem Articular , Fêmur , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Células Imobilizadas , Fêmur/lesões , Fêmur/metabolismo , Xenoenxertos , Humanos , Masculino , Coelhos
17.
Tissue Eng Part B Rev ; 27(5): 486-513, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115329

RESUMO

Methylcellulose (MC) is an attractive material used to produce thermo-responsive hydrogels. They undergo sol-gel transition when a critical temperature is reached, thus modifying their properties (e.g., physicochemical and mechanical) in response to temperature changes. This behavior is particularly attractive when the body temperature acts as a trigger to modulate the thermo-responsive behavior of MC hydrogels. In this regard, exciting advances have been achieved in the field of cell and drug delivery, tissue engineering, and regenerative medicine, making MC a very attractive and versatile biomaterial. This review aims to present MC hydrogels, examining their preparation, physical properties, and tunability of thermal response, lastly moving to a comprehensive depiction of both their conventional and innovative applications for tissue regeneration purposes. In particular, three main families of applications are introduced: (1) in situ gelling systems, which undergo sol-gel transition upon delivery into a target site (e.g., tissue or organ), assisting the regeneration of the latter both in the presence or absence of loading components (e.g., cells, biomolecules, and inorganic materials); (2) three-dimensional (3D) (bio)printing, where the sol-gel transition is induced by heating MC-based (bio)inks after printing, obtaining 3D tissue-engineered substitutes with defined geometries and high shape fidelity; (3) smart culture surfaces, where the hydrophilic/hydrophobic transition of MC is exploited to reach a selective attachment/detachment of cells, offering the possibility to obtain cell sheets and cell bodies for tissue reconstruction without the need of any proteolytic enzyme. The main limitations of MC hydrogels will be then examined, together with current solutions to overcome them. Moreover, an overview of the future directions in the field of MC smart hydrogels will be given, with particular focus on the design of multiresponsive systems capable to respond to multiple stimuli (e.g., chemical and biological stimuli), toward the development of more patient-specific treatments. Finally, an overview of the patents and clinical trials describing the use of MC will be given, retracing the abovementioned families of application.


Assuntos
Hidrogéis , Metilcelulose , Materiais Biocompatíveis , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-32714912

RESUMO

Decellularized tissues are a valid alternative as tissue engineering scaffolds, thanks to the three-dimensional structure that mimics native tissues to be regenerated and the biomimetic microenvironment for cells and tissues growth. Despite decellularized animal tissues have long been used, plant tissue decellularized scaffolds might overcome availability issues, high costs and ethical concerns related to the use of animal sources. The wide range of features covered by different plants offers a unique opportunity for the development of tissue-specific scaffolds, depending on the morphological, physical and mechanical peculiarities of each plant. Herein, three different plant tissues (i.e., apple, carrot, and celery) were decellularized and, according to their peculiar properties (i.e., porosity, mechanical properties), addressed to regeneration of adipose tissue, bone tissue and tendons, respectively. Decellularized apple, carrot and celery maintained their porous structure, with pores ranging from 70 to 420 µm, depending on the plant source, and were stable in PBS at 37°C up to 7 weeks. Different mechanical properties (i.e., Eapple = 4 kPa, Ecarrot = 43 kPa, Ecelery = 590 kPa) were measured and no indirect cytotoxic effects were demonstrated in vitro after plants decellularization. After coating with poly-L-lysine, apples supported 3T3-L1 preadipocytes adhesion, proliferation and adipogenic differentiation; carrots supported MC3T3-E1 pre-osteoblasts adhesion, proliferation and osteogenic differentiation; celery supported L929 cells adhesion, proliferation and guided anisotropic cells orientation. The versatile features of decellularized plant tissues and their potential for the regeneration of different tissues are proved in this work.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32426350

RESUMO

Chitosan is a natural polymer widely investigated and used due to its antibacterial activity, mucoadhesive, analgesic, and hemostatic properties. Its biocompatibility makes chitosan a favorable candidate for different applications in tissue engineering (TE), such as skin, bone, and cartilage tissue regeneration. Despite promising results obtained with chitosan 3D scaffolds, significant challenges persist in fabricating hydrogel structures with ordered architectures and biological properties to mimic native tissues. In this work, chitosan has been investigated aiming at designing and fabricating uniaxial scaffolds which can be proposed for the regeneration of anisotropic tissues (i.e., skin, skeletal muscle, myocardium) by 3D printing technology. Chitosan was blended with gelatin to form a polyelectrolyte complex in two different ratios, to improve printability and shape retention. After the optimization of the printing process parameters, different crosslinking conditions were investigated, and the 3D printed samples were characterized. Tripolyphosphate (TPP) was used as crosslinker for chitosan-based scaffolds. For the optimization of the printing temperature, the sol-gel temperature of the chitosan-gelatin blend was determined by rheological measurements and extrusion temperature was set to 20°C (i.e., below sol-gel temperature). The shape fidelity and surface morphology of the 3D printed scaffolds after crosslinking was dependent on crosslinking conditions. Interestingly, mechanical properties of the scaffolds were also significantly affected by the crosslinking conditions, nonetheless the stability of the scaffolds was strongly determined by the content of gelatin in the blend. Lastly, in vitro cytocompatibility test was performed to evaluate the interactions between L929 cells and the 3D printed samples. 2% w/v chitosan and 4% w/v gelatin hydrogel scaffolds crosslinked with 10% TPP, 30 min at 4°C following 30 min at 37°C have shown cytocompatible and stable characteristics, compared to all other tested conditions, showing suitable properties for the regeneration of anisotropic tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA