Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(47): 26674-26679, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34668906

RESUMO

Fe-N-C electrocatalysts hold a great promise for Pt-free energy conversion, driving the electrocatalysis of oxygen reduction and evolution, oxidation of nitrogen fuels, and reduction of N2, CO2, and NOx. Nevertheless, the catalytic role of iron carbide, a component of nearly every pyrolytic Fe-N-C material, is at the focus of a heated controversy. We now resolve the debate by examining a broad range of Fe3C sites, spanning across many typical size distributions and carbon environments. Removing Fe3C selectively by a non-oxidizing acid reveals its inactivity towards two representative reactions in alkaline media, oxygen reduction and hydrazine oxidation. The activity is assigned to other pre-existing sites, most probably Fe-Nx. DFT calculations prove that the Fe3C surface binds O and N intermediates too strongly to be catalytic. By settling the argument on the catalytic role of Fe3C in alkaline electrocatalysis, we hope to spur innovation in this critical field.

2.
Chem Commun (Camb) ; 57(57): 7015-7018, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34165132

RESUMO

Long-range structures and dynamics are central to coordination chemistry, yet are hard to identify experimentally. By combining polarized low-frequency Raman spectroscopy with single crystal XRD to study barium nitrilotriacetate, a metal-organic coordination polymer and a useful pyrolysis precursor, we could assign Raman peaks experimentally to layer shear motions and perpendicular hydrogen bond vibrations. These directional long-range interactions further determined the preferred fracture directions during crystallization, establishing an important link between structural motifs in the precursor, and the porosity of the carbon it yields upon pyrolysis.

3.
Angew Chem Int Ed Engl ; 57(52): 17168-17172, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30419148

RESUMO

We report an efficient electrocatalyst for the oxidation of hydrazine, a promising fuel for fuel cells and an important analyte for health and environmental monitoring. To design this material, we emulated natural nitrogen-cycle enzymes, focusing on designing a cooperative, multi-doped active site. The catalytic oxidation occurs on Fe2 MoC nanoparticles and on edge-positioned nitrogen dopants, all well-dispersed on a hierarchically porous, graphitic carbon matrix that provides active site exposure to mass-transfer and charge flow. The new catalyst is the first carbide with HzOR activity. It operates at the most negative onset potentials reported for carbon-based HzOR catalysts at pH 14 (0.28 V vs. RHE), and has good-to-excellent activity at pH values down to 0. It shows high faradaic efficiency for oxidation to N2 (3.6 e- /N2 H4 ), and is perfectly stable for at least 2000 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA