Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453109

RESUMO

In this study, nanocomposite films were produced by blending polyvinyl alcohol (PVA) and chitosan (Cs) polymers with 70 % PVA and 30 % Cs, incorporating silver nanoparticles (Ag NPs) via a solution-casting method. The research aims to investigate the impact of the biosynthesized Ag NPs by Chenopodium murale leaf extract on optical, morphological, mechanical, thermal, electrical, and antibacterial properties. XRD analysis showed a decrease in crystallinity degree with Ag NPs addition. TEM revealed Ag NPs in cubic and spherical shapes with an average size of 23.4 nm. SEM and AFM indicated surface morphology changes. FT-IR spectra showed interaction between Ag ions and the blend. The energy gap decreased with increasing Ag NPs concentration. TGA exhibited enhanced thermal stability. Mechanical properties improved significantly. AC electrical conductivity and dielectric parameters were studied. Antibacterial activity against Gram-positive and Gram-negative bacteria was observed. Overall, PVA/Cs-Ag NPs films show promise for food packaging and optoelectronic applications.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Prata , Álcool de Polivinil , Embalagem de Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas
2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904463

RESUMO

The polymeric material polyvinyl pyrrolidine/carboxymethyl cellulose (PVP/CMC) was mixed with different quantities of tungsten-trioxide nanoparticles (WO3 NPs). The samples were created using the casting method and Pulsed Laser Ablation (PLA). The manufactured samples were analyzed by utilizing various methods. The halo peak of the PVP/CMC was located at 19.65°, confirming its semi-crystalline nature, as shown in the XRD analysis. FT-IR spectra of pure PVP/CMC composite and PVP/CMC composite incorporated with various contents of WO3 obtained a shift in band locations and change in intensity. Optical band gap was calculated via UV-Vis spectra, which decreased when increasing the laser-ablation time. Thermogravimetric analyses (TGA) curves showed that samples' thermal stability had improved. The frequency-dependent composite films were used to determine AC conductivity of the generated films. When increasing the content of tungsten-trioxide nanoparticles, both (ε') and (ε'') increased. The incorporation of tungsten trioxide enhanced the ionic conductivity of PVP/CMC/WO3 nano-composite to a maximum of 10-8 S/c. It is expected that these studies will have a significant impact on several utilizations, such as energy storage, polymer organic semiconductors, and polymer solar cells.

3.
RSC Adv ; 10(62): 37621-37630, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35515144

RESUMO

Films of polyethylene oxide and sodium alginate polymer blend (50/50 wt%) embedded with different quantities of Au nanoparticles with size 3-32 nm were made using the casting process. The nanocomposite films were examined by XRD analysis, FT-IR spectroscopy, TEM, UV/vis spectroscopy, and AC conductivity and dielectric parameter measurements. The XRD spectra revealed the amorphous nature of the prepared films (PEO/SA-Au NPs). From the Fourier transform infrared spectra it can be seem that the intensity of the FT-IR bands decreased which depicted the existence of the interaction between (PEO/SA) virgin polymer and gold nanoparticles. The TEM micrographs showed a cubic-structure for Au NPs with an average size of 15-20 nm. The optical properties of the polymer composite were examined by ultraviolet-visible techniques. In a direct transition the optical energy gap (E g) of the prepared films is decreased from 4.73 to 2.92 eV and in an indirect transition decreased from 2.95 to 1.50 eV. The dielectric and electrical spectra of the obtained films were examined via dielectric broad-band spectroscopy. The electrical and dielectric measurements are appropriate for the use of the polymer nanocomposite films in the fabrication of electroactive materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA