Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 10(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34359978

RESUMO

Drought limits the growth and productivity of plants. Reproductive development is sensitive to drought but the underlying physiological and molecular mechanisms remain unclear in tomatoes. Here, we investigated the effect of drought on tomato floral development using morpho-physiological and transcriptome analyses. Drought-induced male sterility through abnormal anther development includes pollen abortion, inadequate pollen starch accumulation and anther indehiscence which caused floral bud and opened flower abortions and reduced fruit set/yield. Under drought stress (DS), pollen mother cell to meiotic (PMC-MEI) anthers survived whereas tetrad to vacuolated uninucleate microspore (TED-VUM) anthers aborted. PMC-MEI anthers had lower ABA increase, reduced IAA and elevated sugar contents under DS relative to well-watered tomato plants. However, TED-VUM anthers had higher ABA increase and IAA levels, and lower accumulation of soluble sugars, indicating abnormal carbohydrate and hormone metabolisms when exposed to drought-stress conditions. Moreover, RNA-Seq analysis identified altogether >15,000 differentially expressed genes that were assigned to multiple pathways, suggesting that tomato anthers utilize complicated mechanisms to cope with drought. In particular, we found that tapetum development and ABA homeostasis genes were drought-induced while sugar utilization and IAA metabolic genes were drought-repressed in PMC-MEI anthers. Our results suggest an important role of phytohormones metabolisms in anther development under DS and provide novel insight into the molecular mechanism underlying drought resistance in tomatoes.


Assuntos
Secas , Flores/anatomia & histologia , Flores/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Transporte Biológico , Fertilidade , Flores/citologia , Flores/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Pólen/citologia , Pólen/genética , Pólen/ultraestrutura , Transdução de Sinais , Solubilidade , Amido/metabolismo , Sacarose/metabolismo
2.
Antioxidants (Basel) ; 10(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374725

RESUMO

Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most damaging pepper (Capsicum annum L.) disease. Melatonin induces transcription of defense-related genes that enhance resistance to pathogens and mediate physiological activities in plants. To study whether the melatonin-mediated pathogen resistance is associated with chitinase gene (CaChiIII2), pepper plants and Arabidopsis seeds were treated with melatonin, then CaChiIII2 activation, hydrogen peroxide (H2O2) levels, and antioxidant enzymes activity during plant-pathogen interactions were investigated. Melatonin pretreatment uncoupled the knockdown of CaChiIII2 and transiently activated its expression level in both control and CaChiIII2-silenced pepper plants and enhanced plant resistance. Suppression of CaChiIII2 in pepper plants showed a significant decreased in the induction of defense-related genes and resistance to pathogens compared with control plants. Moreover, melatonin efficiently enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhanced the activities of antioxidant enzymes, which possibly improved disease resistance. The activation of the chitinase gene CaChiIII2 in transgenic Arabidopsis lines was elevated under C. gloeosporioides infection and exhibited resistance through decreasing H2O2 biosynthesis and maintaining H2O2 at a steady-state level. Whereas melatonin primed CaChiIII2-overexpressed (OE) and wild-type (WT) Arabidopsis seedlings displayed a remarkable increase in root-length compared to the unprimed WT plants. Using an array of CaChiIII2 knockdown and OE, we found that melatonin efficiently induced CaChiIII2 and other pathogenesis-related genes expressions, responsible for the innate immunity response of pepper against anthracnose disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA