Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; : 1-12, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449387

RESUMO

Incidents of mining dam failure have compromised the water quality, threatening the water supply. Different strategies are sought to restore the impacted area and to guarantee the water supply. One example is water treatment plants that treat high-polluted waters within the required limits for their multiple usages. The current study assesses the integration of reverse osmosis (RO) to a river water treatment plant (RWTP) installed in Brumadinho (Minas Gerais, Brazil) to treat the water from the Ferro-Carvão stream impacted by the B1 dam rupture in 2019. The RWTP started eleven months after the mining dam rupture and is equipped with eight coagulation-flocculation tanks followed by eight pressurised filters. A pilot RO plant was installed to polish the water treated by the RWTP. Water samples were collected at different points of the water treatment plant and were characterised by their physical, chemical, and biological parameters (160 in total). The results were compared with the historical data (1997-2022) to reveal the alterations in the water quality after the rupture event. The compliance with both parameters was only achieved after the RO treatment, which acted as an additional barrier to 30 contaminants. The water quality indexes (WQI) suggested that the raw surface water, even eleven months after the incident, was unfit for consumption (WQI: 133.9) whereas the reverse osmosis permeate was ranked as excellent in the rating grid (WQI: 23.7).

2.
Water Sci Technol ; 85(11): 3184-3195, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35704404

RESUMO

Granular sludge is a promising biotechnology to treat sewage contaminated with pharmaceuticals due to its increased toxicity resistance. In this context, this study evaluated the potential of Ca2+ as a granulation precursor and how pharmaceutical compounds (loratadine, prednisone, fluconazole, fenofibrate, betamethasone, 17α-ethinyl estradiol, and ketoprofen) affect granulation. Continuous and intermittent dosages of Ca2+ in the presence and absence of pharmaceuticals were evaluated. The results showed that intermittent addition of Ca2+ reduces the time for anaerobic sludge granulation, and pharmaceuticals presence did not impair granulation. 10% of the granules presented mean diameters greater than 2.11 mm within 93 days with intermittent Ca2+ dosage in the pharmaceuticals' presence. In contrast, no granules higher than 2.0 mm were observed with no precursor addition. The pharmaceuticals' toxicity may have created a stress condition for the microbial community, contributing to more EPS production and a greater potential for granulation. It was also verified that pharmaceuticals' presence did not decrease organic matter, total alkalinity, and volatile fatty acids removals. The 16S rRNA gene analysis revealed taxa resistance to recalcitrant compounds when pharmaceuticals were added. Besides, the efficiency of a granular sludge bioreactor (EGSB) was evaluated for pharmaceuticals removal, and betamethasone, fenofibrate, and prednisone were effectively removed.


Assuntos
Cálcio , Preparações Farmacêuticas , Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Betametasona , Reatores Biológicos/microbiologia , Cálcio/química , Fenofibrato , Preparações Farmacêuticas/química , Prednisona , RNA Ribossômico 16S , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
3.
Environ Sci Pollut Res Int ; 28(19): 23778-23790, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33128710

RESUMO

Conventional sewage treatment systems are generally not designed to remove micropollutants, requiring the development of new technologies, such as the combination of biological processes with advanced oxidative processes. The configuration of an anaerobic expanded granular sludge bed (EGSB) reactor stands out for its use of granular biomass and high sludge bed expansion. Ozonation is an advanced oxidative process that stands out as one of the most promising technologies for the degradation of micropollutants. Thus, the present work aimed to evaluate the removal of drugs through the application of ozonation as a polishing process for the effluent of an EGSB reactor that was fed with synthetic sewage. Ozonation was shown to be efficient in the degradation of these compounds, reaching removals above 90%. It was found that the degradation profile of each drug varied according to its chemical structure since some drugs are more susceptible to oxidation than others and since the concentrations of pharmaceuticals are also related to their removal. Moreover, the assessment of risks to the environment and human health confirmed the need to assess the best scenario for risk reduction considering all drugs, since even with almost complete removal of some compounds, the effluents still showed toxicity. Thus, the high removal efficiencies found for the evaluated micropollutants showed that this technique has the potential to be used to improve the quality of biological reactor effluents or even to be combined in effluent reuse systems.


Assuntos
Ozônio , Esgotos , Anaerobiose , Reatores Biológicos , Humanos , Oxirredução , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA