Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 475(2227): 20190029, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31423089

RESUMO

This paper presents a class of boundary integral equation methods for the numerical solution of acoustic and electromagnetic time-domain scattering problems in the presence of unbounded penetrable interfaces in two spatial dimensions. The proposed methodology relies on convolution quadrature (CQ) schemes and the recently introduced windowed Green function (WGF) method. As in standard time-domain scattering from bounded obstacles, a CQ method of the user's choice is used to transform the problem into a finite number of (complex) frequency-domain problems posed, in our case, on the domains containing unbounded penetrable interfaces. Each one of the frequency-domain transmission problems is then formulated as a second-kind integral equation that is effectively reduced to a bounded interface by means of the WGF method-which introduces errors that decrease super-algebraically fast as the window size increases. The resulting windowed integral equations can then be solved by means of any (accelerated or unaccelerated) off-the-shelf Nyström or boundary element Helmholtz integral equation solvers capable of handling complex wavenumbers with large imaginary part. A high-order Nyström method based on Alpert's quadrature rules is used here. A variety of CQ schemes and numerical examples, including wave propagation in open waveguides as well as scattering from multiple layered media, demonstrate the capabilities of the proposed approach.

2.
Chaos ; 28(9): 096105, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278626

RESUMO

Millimetric droplets may walk across the surface of a vibrating fluid bath, propelled forward by their own guiding or "pilot" wave field. We here consider the interaction of such walking droplets with a submerged circular pillar. While simple scattering events are the norm, as the waves become more pronounced, the drop departs the pillar along a path corresponding to a logarithmic spiral. The system behavior is explored both experimentally and theoretically, using a reduced numerical model in which the pillar is simply treated as a region of decreased wave speed. A trajectory equation valid in the limit of weak droplet acceleration is used to infer an effective force due to the presence of the pillar, which is found to be a lift force proportional to the product of the drop's walking speed and its instantaneous angular speed around the post. This system presents a macroscopic example of pilot-wave-mediated forces giving rise to apparent action at a distance.

3.
Phys Rev Lett ; 120(16): 164503, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756929

RESUMO

Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

4.
Phys Rev Lett ; 110(10): 104104, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521260

RESUMO

We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x = 0 for any t ≥ 0. Here, u(s)(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA