Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Total Environ ; 919: 170846, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342467

RESUMO

Microfibers (MFs), the dominant form of microplastics in ecosystems, pose a significant environmental risk due to the inadequacy of existing wastewater treatments to remove them. Recognising the need to develop sustainable solutions to tackle this environmental challenge, this research aimed to find an eco-friendly solution to the pervasive problem of MFs contaminating water bodies. Unused remnants of bacterial cellulose (BC) were ground to form a hydrogel-form of bacterial cellulose (BCH) and used as a potential bioflocculant for polyacrylonitrile MFs. The flocculation efficiency was evaluated across various operational and environmental factors, employing response surface methodology computational modelling to elucidate and model their impact on the process. The results revealed that the BCH:MFs ratio and mixing intensity were key factors in flocculation efficiency, with BCH resilient across a range of environmental conditions, achieving a 93.6 % average removal rate. The BCH's strong retention of MFs released only 8.3 % of the MFs, after a 24-hour wash, and the flocculation tests in contaminated wastewater and chlorinated water yielded 89.3 % and 86.1 % efficiency, respectively. Therefore, BCH presents a viable, sustainable, and effective approach for removing MFs from MFs-contaminated water, exhibiting exceptional flocculation performance and adaptability. This pioneer study using BCH as a bioflocculant for MFs removal sets a new standard in sustainable wastewater treatment, catalysing research on fibrous pollutant mitigation for environmental protection.


Assuntos
Águas Residuárias , Purificação da Água , Celulose , Hidrogéis , Ecossistema , Plásticos , Bactérias , Floculação , Purificação da Água/métodos , Água
2.
Sci Total Environ ; 877: 162950, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948319

RESUMO

Microplastics (MPs) are a widespread environmental threat, especially to aquatic and urban systems. Water quality is vital for biomass production in microalgal-based industries. Here, industrially relevant microalgae Tetraselmis suecica, Scenedesmus armatus, and Nannochloropsis gaditana were exposed to PS- and PE-MPs (polystyrene and polyethylene, respectively - 10-20 µm) contaminated waters (5 and 10 mg/L). Following industrial empirical and ecotoxicological procedures, the production period was established as four days (exponential growth phase). 27-long day experiments were conducted to determine the chronic effects of MPs contamination in microalgal biomass yields. MPs induced different responses in cell density: T. suecica decreased (up to 11 %); S. armatus showed no changes; and N. gaditana increased (up to 6 %). However, all three microalgae exhibited significant decreases in biomass production (up to 24, 48, and 52 %, respectively). S. armatus exposed to PS-MPs and N. gaditana exposed to PE-MPs were the most impacted regarding biomass production. The decrease in biomass yield was due to the reduction in single-cell weight (up to 14, 47, and 43 %), and/or the production of smaller-sized cells (T. suecica). In response to chronic exposure, microalgae showed signs of cell density adaptation. Despite cell density normalizing, biomass production was still reduced compared to biomass production in clean water. Computational modelling highlighted that MPs exposure had a concentration-dependent negative impact on microalgae biomass. The models allow the evaluation of the systematic risks that MPs impose in microalgal-based industries and stimulate actions towards implementing systems to contain/eliminate MPs contamination in the waters used in microalgae production.


Assuntos
Microalgas , Scenedesmus , Poluentes Químicos da Água , Microplásticos , Plásticos , Biomassa , Poluentes Químicos da Água/toxicidade
3.
Chemosphere ; 314: 137719, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592831

RESUMO

The prevalence of microplastics (MPs) in both urban and aquatic ecosystems is concerning, with wastewater treatment plants being considered one of the major sources of the issue. As the focus on developing sustainable solutions increases, unused remnants from bacterial cellulose (BC) membranes were ground to form BC hydrogels as potential bioflocculants of MPs. The influence of operational parameters such as BC:MPs ratio, hydrogel grinding, immersion and mixing time, temperature, pH, ionic strength, and metal cations on MPs flocculation and dispersion were evaluated. A response surface methodology based on experimental data sets was computed to understand how these parameters influence the flocculation process. Further, both the BC hydrogel and the hetero-aggregation of MPs were characterised by UV-Vis, ATR-FTIR, IGC, water uptake assays, fluorescence, and scanning electron microscopy. These highlights that the BC hydrogel would be fully effective at hetero-aggregating MPs in naturally-occurring concentrations, thereby not constituting a limiting performance factor for MPs' optimal flocculation and aggregation. Even considering exceptionally high concentrations of MPs (2 g/L) that far exceed naturally-occurring concentrations, the BC hydrogel was shown to have elevated MPs flocculation activity (reaching 88.6%: 1.77 g/L). The computation of bioflocculation activity showed high reliability in predicting flocculation performance, unveiling that the BC:MPs ratio and grinding times were the most critical variables modulating flocculation rates. Also, short exposure times (5 min) were sufficient to drive robust particle aggregation. The microporous nature of the hydrogel revealed by electron microscopy is the likely driver of strong MPs bioflocculant activity, far outperforming dispersive commercial bioflocculants like xanthan gum and alginate. This pilot study provides convincing evidence that even BC remainings can be used to produce highly potent and circular bioflocculators of MPs, with prospective application in the wastewater treatment industry.


Assuntos
Hidrogéis , Poluentes Químicos da Água , Microplásticos , Água , Plásticos , Celulose , Ecossistema , Projetos Piloto , Reprodutibilidade dos Testes , Bactérias , Simulação por Computador
4.
Sci Total Environ ; 860: 160497, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436639

RESUMO

A growing number of studies has shown that the exposure to microplastics (MPs) of different polymeric compositions can induce diverse adverse effects towards several aquatic species. The vast majority of such studies has been focused on the effects induced by the administration of MPs made by polystyrene (PS; hereafter PS-MPs). However, despite the increase in the knowledge on the potential toxicity of PS-MPs, there is a dearth of information concerning their role in affecting energy resources and/or their allocation. The present study aimed at exploring the impact of 21-days exposure to three concentrations (0.125, 1.25 and 12.5 µg mL-1) of PS-MPs of different sizes (1 and 10 µm) on fatty acids (FAs) profile of the freshwater Cladoceran Daphnia magna. The exposure to the highest tested concentration of PS-MPs induced an overall decrease in D. magna total FAs content, independently of the particle size. Moreover, a change in the accumulation of essential FAs by the diet was noted, with an enhanced synthesis of monounsaturated FAs-rich storage lipids. However, a sort of adaptation to counteract the adverse effects and to re-establish the FAs homeostasis was observed in individuals treated with high PS-MPs concentration, independently of their size. These results indicate that the exposure to PS-MPs could alter the allocation or induce changes in FAs composition in D. magna, with potential long-term consequences on life-history traits of this zooplanktonic species.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Daphnia , Ácidos Graxos , Poluentes Químicos da Água/análise
5.
Water Res ; 222: 118952, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964508

RESUMO

Microplastics (MPs) pollution has become one of our time's most consequential issue. These micropolymeric particles are ubiquitously distributed across all natural and urban ecosystems. Current filtration systems in wastewater treatment plants (WWTPs) rely on non-biodegradable fossil-based polymeric filters whose maintenance procedures are environmentally damaging and unsustainable. Following the need to develop sustainable filtration frameworks for MPs water removal, years of R&D lead to the conception of bacterial cellulose (BC) biopolymers. These bacterial-based naturally secreted polymers display unique features for biotechnological applications, such as straightforward production, large surface areas, nanoporous structures, biodegradability, and utilitarian circularity. Diligently, techniques such as flow cytometry, scanning electron microscopy and fluorescence microscopy were used to evaluate the feasibility and characterise the removal dynamics of highly concentrated MPs-polluted water by BC biopolymers. Results show that BC biopolymers display removal efficiencies of MPs of up to 99%, maintaining high performance for several continuous cycles. The polymer's characterisation showed that MPs were both adsorbed and incorporated in the 3D nanofibrillar network. The use of more economically- and logistics-favourable dried BC biopolymers preserves their physicochemical properties while maintaining high efficiency (93-96%). These polymers exhibited exceptional structural preservation, conserving a high water uptake capacity which drives microparticle retention. In sum, this study provides clear evidence that BC biopolymers are high performing, multifaceted and genuinely sustainable/circular alternatives to synthetic water treatment MPs-removal technologies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Bactérias , Biopolímeros , Celulose , Ecossistema , Plásticos , Polímeros , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
6.
Water Res ; 186: 116370, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32906034

RESUMO

Microplastics (MPs) are widely spread throughout aquatic systems and water bodies. Given that water quality is one of the most important parameters in the microalgal-based industry, it is critical to assess the biochemical impact of short- and long-term exposure to MPs pollution. Here, the microalga Phaeodactylum tricornutum was exposed to water contaminated with 0.5 and 50 mg L-1 of polystyrene (PS) and/or polymethyl methacrylate (PMMA). Results show that the microalgal cultures exposed to lower concentrations of PS displayed a growth enhancement of up to 73% in the first stage (days 3-9) of the exponential growth phase. Surprisingly, and despite the fact that long-term exposure to MPs contamination did not impair microalgal growth, a steep decrease in biomass production (of up to 82%) was observed. The production of photosynthetic pigments was shown to be pH-correlated during the full growth cycle, but cell density-independent in later stages of culturing. The extracellular carbohydrates production exhibited a major decrease during long-term exposure. Still, the production of extracellular proteins was not affected by the presence of MPs. This pilot laboratory-scale study shows that the microalgal exposure to water contaminated with MPs disturbs its biochemical equilibrium in a time-dependent manner, decreasing biomass production. Thus, microalgal industry-related consequences derived from the use of MPs-contaminated water are a plausible possibility.


Assuntos
Diatomáceas , Microalgas , Biomassa , Microplásticos , Plásticos
7.
Environ Pollut ; 263(Pt B): 114385, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203858

RESUMO

The increasing water pollution caused by the presence of nano- and microplastics has shown a need to pursue solutions to remediate this problem. In this work, an extracellular polymeric substance (EPS) producing freshwater Cyanothece sp. strain was exposed to nano- and microplastics. The bioflocculant capacity of the biopolymer produced was evaluated. The influence of different concentrations (1 and 10 mg L-1) of polystyrene nano- and microplastics in the extracellular carbohydrates and in the EPS production was studied. The presence of nano- and microplastics induced a negative effect on the microalgal growth (of up to 47%). The results show that the EPS produced by Cyanothece sp. exhibits high bioflocculant activity in low concentrations. Also, the EPS displayed very favourable characteristics for aggregation, as the aggregates were confirmed to consist of microalga, EPS and both the nano- and microplastics. These results highlight the potential of the microalgal-based biopolymers to replace hazardous synthetic flocculants used in wastewater treatment, while aggregating and flocculating nano- and microplastics, demonstrating to be a multi-purposed, compelling, biocompatible solution to nano- and microplastic pollution.


Assuntos
Microalgas , Poluentes Químicos da Água , Biopolímeros , Matriz Extracelular de Substâncias Poliméricas , Microplásticos , Plásticos , Águas Residuárias
8.
Aquat Toxicol ; 215: 105281, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31446302

RESUMO

Phthalate esters are highly present in aquatic plastic litter, which can interfere with the biological processes in the wildlife. In this work, the commonly found freshwater microalga Scenedesmus sp. was exposed to environmental concentrations (0.02, 1 and 100 µg L-1) and to a higher concentration (500 µg L-1) of dibutyl phthalate (DBP), which is an environmental pollutant. The growth, pH variation, production of photosynthetic pigments, proteins and carbohydrates were evaluated. The main inhibition effect of DBP on the microalgal growth was observed in the first 48 h of the exposure (EC50: 41.88 µg L-1). A reduction in the photosynthetic pigment concentration was observed for the 0.02, 1 and 100 µg L-1 conditions indicating that the DBP downregulated the growth rate and affected the photosynthetic process. A significant increase in protein production was only observed under 500 µg L-1 DBP exposure. The extracellular carbohydrates production slightly decreased with the presence of DBP, with a stronger decrease occurring in the 500 µg L-1 condition. These results highlight the environmental risk evaluation and ecotoxicological effects of DBP on the production of biovaluable compounds by microalgae. The results also emphasize the importance of assessing the consequences of the environmental concentrations exposure as a result of the DBP dose-dependent correlation effects.


Assuntos
Dibutilftalato/toxicidade , Ecotoxicologia , Plásticos/toxicidade , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Proteínas de Algas/biossíntese , Carboidratos/biossíntese , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/biossíntese , Scenedesmus/crescimento & desenvolvimento
9.
Materials (Basel) ; 12(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311139

RESUMO

Bacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.

10.
Environ Pollut ; 249: 372-380, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30909130

RESUMO

Microalgae can excrete exopolymer substances (EPS) with a potential to form hetero-aggregates with microplastic particles. In this work, two freshwater (Microcystis panniformis and Scenedesmus sp.) and two marine (Tetraselmis sp. and Gloeocapsa sp.) EPS producing microalgae were exposed to different microplastics. In this study, the influence of the microplastic particles type, size and density in the production of EPS and hetero-aggregates potential was studied. Most microalgae contaminated with microplastics displayed a cell abundance decrease (of up to 42%) in the cultures. The results showed that the formed aggregates were composed of microalgae and EPS (homo-aggregates) or a combination of microalgae, EPS and microplastics (hetero-aggregates). The hetero-aggregation was dependent on the size and yield production of EPS, which was species specific. Microcystis panniformis and Scenedesmus sp. exhibited small EPS, with a higher propension to disaggregate, and consequently lower capabilities to aggregate microplastics. Tetraselmis sp. displayed a higher ability to aggregate both low and high-density microplastics, being partially limited by the size of the microplastics. Gloeocapsa sp. had an outstanding EPS production and presented excellent microplastic aggregation capabilities (adhered onto the surface and also incorporated into the EPS). The results highlight the potential of microalgae to produce EPS and flocculate microplastics, contributing to their vertical transport and consequent deposition. Thus, this work shows the potential of microalgae as biocompatible solutions to water microplastics treatment.


Assuntos
Clorófitas/metabolismo , Microalgas/metabolismo , Microcystis/metabolismo , Nanopartículas/metabolismo , Plásticos/metabolismo , Scenedesmus/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Matriz Extracelular de Substâncias Poliméricas , Água Doce/química
11.
Int J Biol Macromol ; 127: 618-627, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30695728

RESUMO

Nanocomposites composed of poly(glycidyl methacrylate) (PGMA) and bacterial cellulose (BC) were prepared by the in-situ free radical polymerization of glycidyl methacrylate (GMA) inside the BC network. The resulting nanocomposites were characterized in terms of structure, morphology, water-uptake capacity, thermal stability and viscoelastic properties. The three-dimensional structure of BC endowed the nanocomposites with good thermal stability (up to 270 °C) and viscoelastic properties (minimum storage modulus = 80 MPa at 200 °C). In addition, the water-uptake and crystallinity decreased with the increasing content of the hydrophobic and amorphous PGMA matrix. These nanocomposites were then submitted to post-modification via acid-catalysed hydrolysis to convert the hydrophobic PGMA into the hydrophilic poly(glyceryl methacrylate) (PGOHMA) counterpart, which increased the hydrophilicity of the nanocomposites and consequently improved their water-uptake capacity. Besides, the post-modified nanocomposites maintained a good thermal stability (up to 250 °C), viscoelastic properties (minimum storage modulus = 171 MPa at 200 °C) and porous structure. In view of these results, the PGMA/BC nanocomposites can be used as functional hydrophobic nanocomposites for post-modification reactions, whereas the PGOHMA/BC nanocomposites might have potential for biomedical applications requiring hydrophilic, swellable and biocompatible materials.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Gluconacetobacter/química , Nanocompostos/química , Ácidos Polimetacrílicos/química
12.
Carbohydr Polym ; 206: 86-93, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553394

RESUMO

Nanocomposites of poly(glycidyl methacrylate) and bacterial cellulose (BC), or poly(poly(ethylene glycol) methacrylate) and BC were produced via the in-situ polymerization of methacrylic monomers, inside the BC 3D network. The nanocomposites surface properties were evaluated by inverse gas chromatography (IGC). The dispersive component of surface energy (γsd) varied between 35.64 - 83.05 mJ m-2 at 25 °C. The surface of the different nanocomposites has a predominant basic character (Kb/Ka = 4.20-4.31). Higher specific interactions with polar probes were found for the nanocomposite bearing pendant epoxide groups, that apart from the low surface area (SBET = 0.83 m2 g-1) and monolayer capacity (nm = 2.18 µmol g-1), exhibits a high value of γsd (88.19 mJ m-2 at 20 °C). These results confirm the potential of IGC to differentiate between nanocomposites with different surface functional groups and to predict their potential interactions with living tissues, body fluids and other materials.

13.
J Mater Sci Mater Med ; 29(9): 137, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120580

RESUMO

Fabricating novel materials for biomedical applications mostly require the use of biodegradable materials. In this work biodegradable materials like polylactic acid (PLA) and chitosan (CHS) were used for designing electrospun mats. This work reports the physical and chemical characterization of the PLA-CHS composite, prepared by the electrospinning technique using a mixed solvent system. The addition of chitosan into PLA, offered decrease in fiber diameter in the composites with uniformity in the distribution of fibers with an optimum at 0.4wt% CHS. The fiber formation and the reduction in fiber diameter were confirmed by the SEM micrograph. The inverse gas chromatography and contact angle measurements supported the increase of hydrophobicity of the composite membrane with increase of filler concentration. The weak interaction between PLA and chitosan was confirmed by Fourier transform infrared spectroscopy and thermal analysis. The stability of the composite was established by zeta potential measurements. Cytotoxicity studies of the membranes were also carried out and found that up to 0.6% CHS the composite material was noncytotoxic. The current findings are very important for the design and development of new materials based on polylactic acid-chitosan composites for environmental and biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Poliésteres/química , Polímeros/química , Engenharia Tecidual/instrumentação , Algoritmos , Varredura Diferencial de Calorimetria , Sobrevivência Celular , Cromatografia Gasosa , Eletroquímica , Fibroblastos/metabolismo , Humanos , Compostos Inorgânicos/química , Microscopia Eletrônica de Varredura , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Resistência à Tração , Termogravimetria , Fatores de Tempo
14.
Carbohydr Polym ; 183: 254-262, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352882

RESUMO

Bacterial cellulose/polyaniline (BC/PANi) blends present a great potential for several applications. The current study evaluates the impact of using different BC matrixes (drained, freeze-dried and regenerated) and different synthesis conditions (in situ and ex situ) to improve the inherent properties of BC, which were monitored through FTIR-ATR, EDX, XRD, SEM, AFM, swelling, contact angle measurement and IGC. The employment of in situ polymerization onto drained BC presented the most conductive membrane (1.4 × 10-1 S/cm). The crystallinity, swelling capacity, surface energy and acid/base behavior of the BC membranes is substantially modified upon PANi incorporation, being dependent on the BC matrix used, being the freeze-dried BC blends the ones with highest crystallinity (up to 54%), swelling capacity (up to 414%) and surface energy (up to 75.0 mJ/m2). Hence, this work evidenced that the final properties of the BC/PANi blends are greatly influenced by both the BC matrixes and synthesis methods employed.


Assuntos
Compostos de Anilina/química , Celulose/análogos & derivados , Condutividade Elétrica , Gluconacetobacter/química , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas
15.
Mater Sci Eng C Mater Biol Appl ; 65: 393-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157766

RESUMO

In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO3) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO3 content incorporation. The CaCO3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose.


Assuntos
Carbonato de Cálcio/química , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Nanocompostos/química , Celulose/química , Meios de Cultura/química , Etanol/química , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Materials (Basel) ; 9(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28787850

RESUMO

Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further increase of the filler content. Incorporation of CNF also significantly reduced the swelling percentage and water solubility of alginate-based films, with the lower values found for 10 wt % in CNF. Biodegradation studies of the films in soil confirmed that the biodegradation time of alginate/CNF films greatly depends on the CNF content. The results evidence that the stronger intermolecular interaction and molecular compatibility between alginate and CNF components was at 10 wt % in CNF alginate films.

17.
Carbohydr Polym ; 126: 32-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25933519

RESUMO

A novel method to synthesize highly crosslinked bacterial cellulose (BC) is reported. The glyoxalization is started in-situ, in the culture medium during biosynthesis of cellulose by Gluconacetobacter medellensis bacteria. Strong crosslinked networks were formed in the contact areas between extruded cellulose ribbons by reaction with the glyoxal precursors. The crystalline structure of cellulose was preserved while the acidic component of the surface energy was reduced. As a consequence, its predominant acidic character and the relative contribution of the dispersive component increased, endowing the BC network with a higher hydrophobicity. This route for in-situ crosslinking is expected to facilitate other modifications upon biosynthesis of cellulose ribbons by microorganisms and to engineer the strength and surface energy of their networks.


Assuntos
Celulose/metabolismo , Celulose/ultraestrutura , Gluconacetobacter/metabolismo , Glioxal/metabolismo , Celulose/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Gluconacetobacter/química , Glioxal/química , Difração de Raios X
18.
Brain Stimul ; 8(2): 289-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25550147

RESUMO

BACKGROUND: It has been already shown that delivering tDCS that are spaced by an interval alters its impact on motor plasticity. These effects can be explained, based on metaplasticity in which a previous modification of activity in a neuronal network can change the effects of subsequent interventions in the same network. But to date there is limited data assessing metaplasticity effects in cognitive functioning. OBJECTIVES: The aim of this study was to test several tDCS-based metaplasticity protocols in working memory (WM), by studying the impact of various interstimulation intervals in the performance of a 3-back task. METHODS: Fifteen healthy volunteers per experiment participated in this study. Experiments 1 and 2 tested an anodal tDCS-induced metaplasticity protocol (1 mA, 10 + 10') with 3 interstimulation intervals (10, 30, and 60 min). Experiment 3 determined the effects of a similar protocol-with a 10-min interval between two sessions of cathodal tDCS or anodal plus cathodal tDCS (1 mA, 10 + 10'). RESULTS: Two consecutive sessions of anodal tDCS delivered with a 10 min interval between them did not improve WM performance (P = .095). This effect remained the same if the interval was increased to 30 or 60 min. In contrast, when a 10 min interval was given between two consecutive cathodal tDCS sessions, performance in the 3 back task increased (P = .042). CONCLUSIONS: These results suggest that the polarity effects of tDCS on working memory are dependent on the previous level of activity of the recruited neural population.


Assuntos
Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Cognição , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
19.
J Agric Food Chem ; 61(50): 12380-4, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24345069

RESUMO

The lipophilic extracts from the storage root of 13 cultivars of sweet potato (Ipomoea batatas (L.) Lam.) were evaluated by gas chromatography-mass spectrometry with the aim to valorize them and offer information on their nutritional properties and potential health benefits. The amount of lipophilic extractives ranged from 0.87 to 1.32% dry weight. Fatty acids and sterols were the major families of compounds identified. The most abundant saturated and unsaturated fatty acids were hexadecanoic acid (182-428 mg/kg) and octadeca-9,12-dienoic acid (133-554 mg/kg), respectively. ß-Sitosterol was the principal phytosterol, representing 55.2-77.6% of this family, followed by campesterol. Long-chain aliphatic alcohols and α-tocopherol were also detected but in smaller amounts. The results suggest that sweet potato should be considered as an important dietary source of lipophilic phytochemicals.


Assuntos
Ipomoea batatas/química , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Ácidos Graxos/análise , Ipomoea batatas/classificação , Valor Nutritivo , Fitosteróis/análise , alfa-Tocoferol/análise
20.
Carbohydr Polym ; 98(1): 1065-71, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23987448

RESUMO

The effect of saponin on the surface properties of banana fibres was studied by Inverse Gas Chromatography (IGC). Parameters including the dispersive component of the surface energy, surface heterogeneity, surface area, as well as acid-base surface properties were determined for saponin modified banana micro and nanofibres. These parameters show a more extensive saponin coating on the nanofibres with a network formation which is explained by the higher reactivity of nanofibres due to the higher surface energy, specific interaction and higher surface area presented by the nanofibres. The energetic profile indicates that both micro and nanofibres coated with saponin interact with the same, or similar, energy active sites. Saponin treatment reduces considerably the surface area of the fibres, with the consequent decrease in the monolayer capacity. The interaction with the polar probes clearly indicates that saponin treatment creates new polar active sites for specific interactions in both samples. However, the treatment increases predominately the basicity of the fibre surface with more relevance to the nanofibres. This behaviour will lead to better polymer/fibre interaction during composite preparation.


Assuntos
Celulose/química , Musa/química , Nanoestruturas/química , Saponinas/química , Concentração de Íons de Hidrogênio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA